Browse > Article
http://dx.doi.org/10.4014/jmb.2003.03041

Physiological Characteristics of Lactobacillus casei Strains and Their Alleviation Effects against Inflammatory Bowel Disease  

Liu, Yang (State Key Laboratory of Food Science and Technology, Jiangnan University)
Li, Yifeng (State Key Laboratory of Food Science and Technology, Jiangnan University)
Yu, Xinjie (Hwa Chong Institution (College))
Yu, Leilei (State Key Laboratory of Food Science and Technology, Jiangnan University)
Tian, Fengwei (State Key Laboratory of Food Science and Technology, Jiangnan University)
Zhao, Jianxin (State Key Laboratory of Food Science and Technology, Jiangnan University)
Zhang, Hao (State Key Laboratory of Food Science and Technology, Jiangnan University)
Zhai, Qixiao (State Key Laboratory of Food Science and Technology, Jiangnan University)
Chen, Wei (State Key Laboratory of Food Science and Technology, Jiangnan University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.1, 2021 , pp. 92-103 More about this Journal
Abstract
Lactobacillus casei, one of the most widely used probiotics, has been reported to alleviate multiple diseases. However, the effects of this species on intestinal diseases are strain-specific. Here, we aimed to screen L. casei strains with inflammatory bowel disease (IBD)-alleviating effects based on in vitro physiological characteristics. Therefore, the physiological characteristics of 29 L. casei strains were determined, including gastrointestinal transit tolerance, oligosaccharide fermentation, HT-29 cell adhesion, generation time, exopolysaccharide production, acetic acid production, and conjugated linoleic acid synthesis. The effects of five candidate strains on mice with induced colitis were also evaluated. The results showed that among all tested L. casei strains, only Lactobacillus casei M2S01 effectively relieved colitis. This strain recovered body weight, restored disease activity index score, and promoted anti-inflammatory cytokine expression. Gut microbiota sequencing showed that L. casei M2S01 restored a healthy gut microbiome composition. The western blotting showed that the alleviating effects of L. casei M2S01 on IBD were related to the inhibition of the NF-κB pathway. A good gastrointestinal tolerance ability may be one of the prerequisites for the IBD-alleviating effects of L. casei. Our results verified the efficacy of L. casei in alleviating IBD and lay the foundation for the rapid screening of L. casei strain with IBD-alleviating effects.
Keywords
Lactobacillus casei; physiological characteristic; probiotic; inflammatory bowel disease; gut microbiota; $NF-{\kappa}B$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ochoa JJ, Farquharson AJ, Grant I, Moffat L, Heys SD, Wahle KW. 2004. Conjugated linoleic acids (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis-9, trans-11 and trans-10, cis-12 isomers. Carcinogenesis 25: 1185-1191.   DOI
2 Malinska H, Huttl M, Oliyarnyk O, Bratova M, Kazdova L. 2015. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition 31: 1045-1051.   DOI
3 Bruen R, Fitzsimons S, Belton O. 2017. Atheroprotective effects of conjugated linoleic acid. Br. J. Clin. Pharmacl. 83: 46-53.   DOI
4 Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, et al. 2004. Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127: 777-791.   DOI
5 Evans NP, Misyak SA, Schmelz EM, Guri AJ, Hontecillas R, Bassaganya-Riera J. 2010. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARγ. J. Nutr. 140: 515-521.   DOI
6 Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z. 2017. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front. Immunl. 8: 942.   DOI
7 Ip WE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. 2017. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356: 513-519.   DOI
8 Lindemans CA, Calafiore M, Mertelsmann AM, O'connor MH, Dudakov JA, Jenq RR, et al. 2015. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528: 560-564.   DOI
9 Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E. 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy. J. 16: 189-199.   DOI
10 Kaplan H, Hutkins RW. 2000. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 66: 2682-2684.   DOI
11 Walsham AD, MacKenzie DA, Cook V, Wemyss-Holden S, Hews CL, Juge N, et al. 2016. Lactobacillus reuteri inhibition of enteropathogenic Escherichia coli adherence to human intestinal epithelium. Front. Microbiol. 7: 244.   DOI
12 Shi Y, Zhao J, Kellingray L, Zhang H, Narbad A, Zhai Q, et al. 2019. 2019. In vitro and in vivo evaluation of Lactobacillus strains and comparative genomic analysis of Lactobacillus plantarum CGMCC12436 reveal candidates of colonise-related genes. Food Res. Int. 119: 813-821.   DOI
13 Feng Y, Wang Y, Wang P, Huang Y, Wang F. 2018. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell. Physiol. Biochem. 49: 190-205.   DOI
14 Tallon R, Bressollier P, Urdaci MC. 2003. 2003. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res. Microbiol. 154: 705-712.   DOI
15 Wang L, Hu L, Xu Q, Jiang T, Fang S, Wang G, et al. 2017. Bifidobacteria exert species-specific effects on constipation in BALB/c mice. Food. Funct. 8: 3587-3600.   DOI
16 Yang B, Chen H, Gu Z, Tian F, Ross R, Stanton C, et al. 2014. Synthesis of conjugated linoleic acid by the linoleate isomerase complex in food‐derived lactobacilli. J. Appl. Microbiol. 117: 430-439.   DOI
17 Yoda K, Miyazawa K, Hosoda M, Hiramatsu M, Yan F, He F. 2014. Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor. Eur. J. Nutr. 53: 105-115.   DOI
18 Hoberg JE, Popko AE, Ramsey CS, Mayo MW. 2006. IκB kinase α-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol. Cell. Biol. 26: 457-471.   DOI
19 Al-Ashy R, Chakroun I, El-Sabban ME, Homaidan FR. 2006. The role of NF-kappaB in mediating the anti-inflammatory effects of IL-10 in intestinal epithelial cells. Cytokine 36: 1-8.   DOI
20 Lightfoot YL, Selle K, Yang T, Goh YJ, Sahay B, Zadeh M, et al. 2015. SIGNR3‐dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J. 34: 881-895.   DOI
21 Bansal T, Alaniz RC, Wood TK, Jayaraman A. 2010. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA 107: 228-233.   DOI
22 Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 104: 7617-7621.   DOI
23 Thirabunyanon M, Hongwittayakorn P. 2013. 2013. Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl. Biochem. Biotechnol. 169: 511-525.   DOI
24 Feng J, Liu P, Yang X, Zhao X. 2015. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables. World. J. Microb. Biotechnol. 31: 1947-1954.   DOI
25 McBain A, Macfarlane G. Modulation of genotoxic enzyme activities by non-digestible oligosaccharide metabolism in in-vitro human gut bacterial ecosystems. J. Med. Microbiol. 50: 833-842.   DOI
26 Wang L, Pan M, Li D, Yin Y, Jiang T, Fang S, et al. 2017. Metagenomic insights into the effects of oligosaccharides on the microbial composition of cecal contents in constipated mice. J. Funct. Foods 38: 486-496.   DOI
27 Marco ML, De Vries MC, Wels M, Molenaar D, Mangell P, Ahrne S, et al. 2010. Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J. 4: 1481.   DOI
28 Wang L, Hu L, Yan S, Jiang T, Fang S, Wang G, et al. 2017. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation. Food Funct. 8: 1966-1978.   DOI
29 Peng X, Li S, Luo J, Wu X, Liu L. 2013. Effects of dietary fibers and their mixtures on short chain fatty acids and microbiota in mice guts. Food Funct. 4: 932-938.   DOI
30 Dutra V, Silva AC, Cabrita P, Peres C, Malcata X, Brito L. 2016. Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures. J. Med. Microbiol. 65: 28-35.   DOI
31 Chen X, Fu Y, Wang L, Qian W, Zheng F, Hou X. 2019. Bifidobacterium longum and VSL# 3® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment. Dev. Comp. Immunol. 92: 77-86.   DOI
32 Nagata Y, Hashiguchi K, Kamimura Y, Yoshida M, Gomyo T. 2009. The gastrointestinal transit tolerance of Lactobacillus plantarum strain No. 14 depended on the carbon source. Biosci. Biotechnol. Biochnol. 73: 2650-2655.   DOI
33 Peng M, Tabashpengsum Z, Patel P, Bernhardt C, Biswas D. 2018. Linoleic acids overproducing Lactobacillus casei limits growth, survival, and virulence of Salmonella Typhimurium and enterohaemorrhagic Escherichia coli. Front. Microbiol. 9: 2663.   DOI
34 Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390: 2769-2778.   DOI
35 Eisenstein M. 2016. Biology: a slow-motion epidemic. Nature 540: S98-S99.   DOI
36 Ng SC, Kaplan GG, Tang W, Banerjee R, Adigopula B, Underwood FE, et al. 2018. Population density and risk of inflammatory bowel disease: A prospective population-based study in 13 countries or regions in Asia-Pacific. Am. J. Gastroenterol. 114: 107-115.   DOI
37 Li Y, Liu M, Zhou J, Hou B, Su X, Liu Z, et al. 2019. Bacillus licheniformis Zhengchangsheng® attenuates DSS-induced colitis and modulates the gut microbiota in mice. Benef. Microbes. 10: 543-553.   DOI
38 Deng H, Zhi F, Fan HY, Bai Y, Zhang Y, Zhang Z, et al. 2018. Bacteroides fragilis prevents Clostridium difficile infection in a mouse model by restoring gut barrier and microbiome regulation. Front. Microbiol. 9: 2976.   DOI
39 Song L, Xie W, Liu Z, Guo D, Zhao D, Qiao X, et al. 2019. Oral delivery of a Lactococcus lactis strain secreting bovine lactoferricin- lactoferrampin alleviates the development of acute colitis in mice. Appl. Microbiol. Biotechnol. 103: 6169-6186.   DOI
40 Zhang F, Li Y, Wang X, Wang S, Bi D. 2019. The impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-induced colitis. Biomed. Res. Int. 2019: 3921315.
41 Jang H-M, Lee K-E, Kim D-H. 2019. The preventive and curative effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients 11: 819.   DOI
42 Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, et al. 2012. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment. Pharm. Ther. 35: 327-334.   DOI
43 Ishikawa H, Matsumoto S, Ohashi Y, Imaoka A, Setoyama H, Umesaki Y, et al. 2011. Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: a randomized controlled study. Digestion 84: 128-133.   DOI
44 Xu C, Guo Y, Qiao L, Ma L, Cheng Y, Roman A. 2018. Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Front. Microbiol. 9: 1129.   DOI
45 Furrie E, Macfarlane S, Kennedy A, Cummings J, Walsh S, O'neil D, et al. 2005. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54: 242-249.   DOI
46 Bjarnason I, Sission G. 2019. A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn's disease. Inflammopharmacology 27: 465-473.   DOI
47 Sgouras D, Maragkoudakis P, Petraki K, Martinez-Gonzalez B, Eriotou E, Michopoulos S, et al. 2004. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl. Environ. Microbiol. 70: 518-526.   DOI
48 Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J, et al. 2011. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One 6: e27961.   DOI
49 Thakur BK, Saha P, Banik G, Saha DR, Grover S, Batish VK, et al. 2016. Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response. Int. Immunopharmacol. 36: 39-50.   DOI
50 Arena MP, Capozzi V, Spano G, Fiocco D. 2017. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl. Microbiol. Biotechnol. 101, 2641-2657   DOI
51 Wang J, Wu T, Fang X, Min W, Yang Z. 2018. Characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus plantarum JLK0142 isolated from fermented dairy tofu. Int. J. Biol. Macromol. 115: 985-993.   DOI
52 Rong J, Zheng H, Liu M, Hu X, Wang T, Zhang X, et al. 2015. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss. BMC Microbiol. 15: 196.   DOI
53 Yadav AK, Tyagi A, Kumar A, Panwar S, Grover S, Saklani AC, et al. 2017. Adhesion of lactobacilli and their anti-infectivity potential. Crit. Rev. Food Sci. 57: 2042-2056.   DOI
54 Khan MA, Ma C, Knodler LA, Valdez Y, Rosenberger CM, Deng W, et al. 2006. Toll-like receptor 4 contributes to colitis development but not to host defense during Citrobacter rodentium infection in mice. Infect. Immun. 74: 2522-2536.   DOI
55 Ou Y, Xu S, Zhu D, Yang X. 2014. 2014. Molecular mechanisms of exopolysaccharide from Aphanothece halaphytica (EPSAH) induced apoptosis in HeLa cells. PLoS One 9: e87223.   DOI
56 Hague A, Elder DJ, Hicks DJ, Paraskeva C. 1995. Apoptosis in colorectal tumour cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int. J. Cancer 60: 400-406.   DOI
57 Hidalgo-Cantabrana C, Lopez P, Gueimonde M, Clara G, Suarez A, Margolles A, et al. 2012. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics. Antimicrob.Proteins 4: 227-237.   DOI
58 Xie C, Li J, Wang K, Li Q, Chen D. 2015. Probiotics for the prevention of antibiotic-associated diarrhoea in older patients: a systematic review. Travel. Med. Infect. Dis. 13: 128-134.   DOI
59 Dunne C, O'Mahony L, Murphy L, Thornton G, Morrissey D, O'Halloran S, et al. 2001. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am. J. Clin. Nutr. 73: 386s-392s.
60 Winkler J, Butler R, Symonds E. 2007. Fructo-oligosaccharide reduces inflammation in a dextran sodium sulphate mouse model of colitis. Digest. Dis. Sci. 52: 52-58.   DOI
61 Kamath PS, Hoepfner M, Phillips S. 1987. Short-chain fatty acids stimulate motility of the canine ileum. Am. J. Physiol. 253: G427-G433.
62 Jones SE, Paynich ML, Kearns DB, Knight KL. 2014. Protection from intestinal inflammation by bacterial exopolysaccharides. J. Immunol. 192: 4813-4820.   DOI
63 Li R, Zhang Y, Polk DB, Tomasula PM, Yan F, Liu L. 2016. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. J. Control. Release 230: 79-87.   DOI
64 Shinde T, Perera AP, Vemuri R, Gondalia SV, Karpe AV, Beale DJ, et al. 2019. Synbiotic supplementation containing whole plant sugar cane fibre and probiotic spores potentiates protective synergistic effects in mouse model of IBD. Nutrients 11: 818.   DOI
65 Sengul N, Aslim B, Ucar G, Yucel N, Isik S, Bozkurt H, et al. 2006. Effects of exopolysaccharide-producing probiotic strains on experimental colitis in rats. Dis. Colon Rectum. 49: 250-258.   DOI