• Title/Summary/Keyword: Candida antarctica lipase B

Search Result 12, Processing Time 0.165 seconds

Exploration and functional expression of homologous lipases of Candida antarctica lipase B (Candida antarctica lipase B의 상동체 효소 탐색과 발현)

  • Park, Seongsoon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • Candida (also known as Pseudozyma) antarctica lipase B (CAL-B) has been intensely studied in academic and industrial fields. However, the research related to its homologous enzymes has been rarely reported. In the current investigation, protein sequence similarity search of CAL-B has been conducted and six homologous protein sequences were identified. After the syntheses of their codon-optimized genes, the synthetic genes have been cloned into a periplasmic expression vector to express in Escherichia coli. Among six homologous sequences, four sequences were successfully expressed in E. coli. The hydrolytic activities of the expressed proteins towards 4-nitrophenyl acetate and 4-nitrophenyl butyrate were measured and compared with those of CAL-B to identify whether the expressed proteins work as a hydrolase. It has been revealed that the expressed proteins can hydrolyze the substrates and the specific activities were determined as $(1.3-30){\times}10^{-2}{\mu}mol/min/mg$, which are lower than those of CAL-B. Among these homologous enzymes, Pseudozyma hubeiensis SY62 exhibits the comparable enantioselectivity to that of CAL-B towards the hydrolysis of (${\pm}$)-1-phenylethyl acetate.

Molecular Cloning and Expression of Candida antarctica lipase B in Corynebacterium genus

  • Gonzalez, Tamara;M'Barek, Hasna Nait;Gomaa, Ahmed E.;Hajjaj, Hassan;Zhen, Chen;Dehua, Liu
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.546-554
    • /
    • 2019
  • This study, for the first time, reports the functional expression of lipase B derived from the yeast Candida antarctica (CALB) in Corynebacterium strain using the Escherichia coli plasmid PK18. The CALB gene fragment encoding a 317-amino-acid protein was successfully obtained from the total RNA of C. antarctica. CALB was readily produced in the Corynebacterium strain without the use of induction methods described in previous studies. This demonstrated the extracellular production of CALB in the Corynebacterium strain. CALB produced in the Corynebacterium MB001 strain transformed with pEC-CALB recombinant plasmid exhibited maximum extracellular enzymatic activity and high substrate affinity. The optimal pH and temperature for the hydrolysis of 4-nitrophenyl laurate by CALB were 9.0 and 40℃, respectively. The enzyme was stable at pH 10.7 in the glycine-KOH buffer and functioned as an alkaline lipase. The CALB activity was inhibited in the presence of high concentration of Mg2+, which indicated that CALB is not a metalloenzyme. These properties are key for the industrial application of the enzyme.

Functional expression of CalB in E.coli (대장균에서의 Candida antarctica lipase B 최적 발현)

  • Kim, Hyun-Sook;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.445-448
    • /
    • 2008
  • Candida antarctica lipase B (CalB) is an efficient biocatalyst for many organic synthesis reactions. To make full use of CalB, we need effective expression system. Previously recombinant CalB was successfully expressed in the methylotropic yeast Pichia pastoris. In addition, we succeed in the functional expression of CalB in the Escherichia coli cytoplasm. This CalB expression system in E.coli has many considerable advantages in comparison with other expression systems and enables high-throughput screening of gene libraries as those derived from directed evolution experiments. To optimize E.coli system, we investigate comparing between OrigamiB (DE3) and BL21 (DE3) and observing effect of IPTG amount.

Construction of Candida antarctica Lipase B Expression System in E. coli Coexpressing Chaperones (대장균에서의 Chaperone 동시 발현을 통한 Candida antarctica Lipase B 발현 시스템 구축)

  • Jung, Sang-Min;Lim, Ae-Kyung;Park, Kyung-Moon
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.403-407
    • /
    • 2008
  • Recently, Candida antarctica lipase B (CalB) draws attention from industries for various applications for food, detergent, fine chemical, and biodiesel, because of its characteristics as an efficient biocatalyst. Since many industrial processes carry out in organic solvent and at high temperature, CalB, which is stable under harsh condition, is in demand from many industries. In order to reform CalB promptly, the expression system which has advantages of ease to use and low cost for gene libraries screening was developed using E. coli. The E. coli strains, Rosettagami with competence for enhanced disulfide bond formation, Novablue, and $DH5{\alpha}$, were exploited in this study. To obtain the soluble CalB, the pCold I vector expressing the cloned gene at $15^{\circ}C$ and the chaperone plasmids containing groES/groEL, groES/groEL/tig, tig, dnaK/dnaJ/grpE, and dnaK/dnaJ/grpE/groES/groEL were used for coexpression of CalB and chaperones. The colonies expressing functional lipase were selected by employing the halo plate containing 1% tributyrin, and the CalB expression was confirmed by SDS-PAGE. E. coli Rosettagami and $DH5{\alpha}$ harbouring groES/groEL chaperones were able to express soluble CalB effectively. From a facilitative point of view, E. coli $DH5{\alpha}$ is more suitable for further mutation study.

Molecular Modeling and its Experimental Verification for the Catalytic Mechanism of Candida antarctica Lipase B

  • Kwon, Cheong-Hoon;Shin, Dae-Young;Lee, Jong-Ho;Kim, Seung-Wook;Kang, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1098-1105
    • /
    • 2007
  • Quantum mechanical and molecular dynamics simulation analysis has been performed on the model system for CALB (Candida antarctica lipase B) with esters to study the reaction mechanism and conformational preference of catalytic hydrolysis and the esterification reaction. Using quantum mechanical analysis, the ping-pong bi-bi mechanism was applied and energies and 3-dimensional binding configurations of the whole reaction pathways were calculated. Further molecular dynamics simulation analysis was performed on the basis of the transition state obtained from quantum mechanical study to observe the effect of structures of the substrates. Calculation results using substrates of different chain length and chiral configurations were compared for conformational preference. The calculated results showed very small influence on chain length, whereas chiral conformation showed big differences. Calculated results from molecular modeling studies have been compared qualitatively with the experimental data using racemic mixtures of (${\pm}$)-cis-4-acetamido-cyclopent-2-ene-1-ethyl acetate as substrates.

Functional Expression of Candida antarctica Lipase A in Pichia a pastoris and Escherichia coli (Pichia pastoris와 Escherichia coli를 이용한 Candida antarctica Lipase A의 기능적 발현)

  • Park, Hye-Jung;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.24 no.4
    • /
    • pp.341-346
    • /
    • 2009
  • Candida Antarctica lipase A (CalA) has been used because of its suitability in industrial applications. CalA has unique features capable to accept tertiary and sterically hindered alcohols among many hydrolases. CalA gene was cloned and constructed in expression vector such as pColdIII/CalA and $pPICZ{\alpha}A$/CalA. The gene encoding pColdIII/CalA was functionally expressed in the cytoplasm of Escherichia coli $Origami^{TM}$ B (DE3) cells. The plasmid $pPICZ{\alpha}A$/CalA linearized by BstX I was integrated into 5'AOX1 region of the chromosomal DNA and was functionally expressed in the methyl atrophic yeast Pichia pastoris. Expressed CalA in P. pastoris (0.7 Unit/mL) showed 35 times higher activity than that in E. coli expression system (0.02 Unit/mL).

Antibacterial Effect of Fructose Laurate Synthesized by Candida antarctica B Lipase-Mediated Transesterification

  • Lee, Ki Ppeum;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1579-1585
    • /
    • 2016
  • Sugar esters are valuable compounds composed of various sugars and fatty acids that can be used as antibacterial agents and emulsifiers in toothpaste and canned foods. For example, fructose fatty acid esters suppress growth of Streptococcus mutans, a typical pathogenic bacterium causing dental caries. In this study, fructose laurate ester was chosen as a target material and was synthesized by a transesterification reaction using Candida antarctica lipase B. We performed a solvent screening experiment and found that a t-butanol/dimethyl sulfoxide mixture was the best solvent to dissolve fructose and methyl laurate. Fructose laurate was synthesized by transesterification of fructose (100 mM) with methyl laurate (30 mM) in t-butanol containing 20% dimethyl sulfoxide. The conversion yield was about 90%, which was calculated based on the quantity of methyl laurate using high-performance liquid chromatography. Fructose monolaurate (Mr 361) was detected in the reaction mixture by high-resolution mass spectrometry. The inhibitory effect of fructose laurate on growth of oral or food spoilage microorganisms, including S. mutans, Bacillus coagulans, and Geobacillus stearothermophilus, was evaluated.

In Vitro Evolution of Lipase B from Candida antarctica Using Surface Display in Hansenula polymorpha

  • Kim, So-Young;Sohn, Jung-Hoon;Pyun, Yu-Ryang;Yang, In-Seok;Kim, Kyung-Hyun;Choi, Eui-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1308-1315
    • /
    • 2007
  • Lipase B from Candida antarctica (CalB) displayed on the cell surface of H. polymorpha has been functionally improved for catalytic activity by molecular evolution. CalB was displayed on the cell surface by fusing to a cell-wall anchor motif (CwpF). A library of CalB mutants was constructed by in vivo recombination in H. polymorpha. Several mutants with increased whole-cell CalB activity were acquired from screening seven thousand transformants. The two independent mutants CalB 10 and CalB 14 showed an approximately 5 times greater whole-cell activity than the wild-type. When these mutants were made as a soluble form, CalB 10 showed 6 times greater activity and CalB 14 showed an 11 times greater activity compared with the wild-type. Sequence analyses of mutant CALB genes revealed amino acid substitutions of $Leu^{278}Pro$ in CalB10 and $Leu^{278}Pro/Leu^{219}Gln$ in CalB14. The substituted $Pro^{278}$ in both mutants was located near the proline site of the ${\alpha}$10 helix. This mutation was assumed to induce a conformational change in the ${\alpha}$10 helix and increased the $k_{cat}$ value of mutant CalB approximately 6 times. Site-directed mutagenized CalB, LQ ($Leu^{219}Gln$) was secreted into the culture supernatant at an amount of approximately 3 times more without an increase in the CalB transcript level, compared with the wild-type.

Lipase-catalyzed Esterification of (S)-Naproxen Ethyl Ester in Supercritical Carbon Dioxide

  • Kwon, Cheong-Hoon;Lee, Jong-Ho;Kim, Seung-Wook;Kang, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1596-1602
    • /
    • 2009
  • A lipase-catalyzed esterification reaction of (S)-naproxen ethyl ester by CALB (Candida antarctica lipase B) enzyme was performed in supercritical carbon dioxide. Experiments were performed in a high-pressure cell for 10 h at a stirring rate of 150 rpm over a temperature range of 313.15 to 333.15 K and a pressure range of 50 to 175 bar. The productivity of (S)-naproxen ethyl ester was compared with the result in ambient condition. The total reaction time and conversion yields of the catalyzed reaction in supercritical carbon dioxide were compared with those at ambient temperature and pressure. The experimental results show that the conversion and reaction rate were significantly improved at critical condition. The maximum conversion yield was 9.9% (216 h) at ambient condition and 68.9% (3 h) in supercritical state. The effects of varying amounts of enzyme and water were also examined and the optimum condition was found (7 g of enzyme and 2% water content).

생물촉매를 이용한 고효율 바이오디젤 생산

  • Son, Jeong-Hun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.267-275
    • /
    • 2005
  • 차세대 재생산성 에너지로 각광을 받고 있는 바이오디젤은 현재 주로 알칼리촉매를 이용하는 화학공정으로 생산하고 있으나 고에너지 요구성이며 대규모 생산시 폐수발생 등 환경오염 유발요인이 있기 때문에 친환경 생물공정의 필요성이 대두되고 있다. 생물촉매 리파제(lipase)를 이용하는 친환경 생물공정은 화학공정에 비해 다양한 장점을 제공하고 있으나 고가의 효소생산 비용문제로 실용화에 어려움이 있다. 따라서 본 연구에서는 저비용의 생물학적 바이오디젤 생산 시스템 구축을 위해 고활성의 효소 개발, 경제적 재조합 대량생산, 반복 재사용을 위한 효소고정화 등을 통해 고효율의 생산반응계를 개발하였다. 우선 바이오디젤 생산공정에 적합한 리파제로서 CalB(Lipase B of Candida antarctica)를 선택하고 분자 진화기술을 이용하여 효소활성을 17배 향상시킨 CalB14를 개발하였다. CalB14를 효모 발현시스템을 이용하여 경제적 대량생산하기 위해 단백질분비를 획기적으로 개선할 수 있는 맞춤형 분비융합합인자기술(TFP technology)을 이용하여 재조합 CalB를 2 grams/liter 수준으로 분비생산하였다. 생산된 효소를 반복 재사용이 가능하도록 다양한 레진에 고정화하였고 최적의 바이오디젤 전환반응용 고정화효소를 개발하였다. 고정화효소를 효율적으로 재사용하기 위해 바이오디젤 생산용 고정상반응기(packed-bed reactor)를 제작하였으며 기질을 12시간내에 95% 이상 바이오디젤로 수십회 이상 반복전환할 수 있는 경제적인 생물학적 바이오디젤 전환 시스템을 구축하였다.

  • PDF