Browse > Article
http://dx.doi.org/10.4014/jmb.0905.05051

Lipase-catalyzed Esterification of (S)-Naproxen Ethyl Ester in Supercritical Carbon Dioxide  

Kwon, Cheong-Hoon (Department of Chemical and Biological Engineering, Korea University)
Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University)
Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Kang, Jeong-Won (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.12, 2009 , pp. 1596-1602 More about this Journal
Abstract
A lipase-catalyzed esterification reaction of (S)-naproxen ethyl ester by CALB (Candida antarctica lipase B) enzyme was performed in supercritical carbon dioxide. Experiments were performed in a high-pressure cell for 10 h at a stirring rate of 150 rpm over a temperature range of 313.15 to 333.15 K and a pressure range of 50 to 175 bar. The productivity of (S)-naproxen ethyl ester was compared with the result in ambient condition. The total reaction time and conversion yields of the catalyzed reaction in supercritical carbon dioxide were compared with those at ambient temperature and pressure. The experimental results show that the conversion and reaction rate were significantly improved at critical condition. The maximum conversion yield was 9.9% (216 h) at ambient condition and 68.9% (3 h) in supercritical state. The effects of varying amounts of enzyme and water were also examined and the optimum condition was found (7 g of enzyme and 2% water content).
Keywords
Supercritical carbon dioxide; Candida antartica lipase B; naproxen; (S)-naproxen ethyl ester; esterification; statistical analysis method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Chang, C. S. and S. W. Tsai. 1997. A facile enzymatic process for the preparation of (S)-naproxen ester prodrug in organic solvents. Enzyme Microb. Technol. 20: 635-639   DOI   ScienceOn
2 Iso, M., B. Chen, M. Eguchi, T. Kudo, and S. Shrestha. 2001. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal. B Enzym. 16: 53-58   DOI   ScienceOn
3 Kwon, C. H., D. Y. Shin, J. H. Lee, S. W. Kim, and J. W. Kang. 2007. Molecular modeling and its experimental verification for the catalytic mechanism of Candida antarctica lipase B. J. Microbiol. Biotechnol. 17: 1098-1105   과학기술학회마을   PUBMED   ScienceOn
4 Ranucci, E., L. Sartore, I. Peroni, R. Latini, R. Bemasconi, and P. Ferruti. 1994. Pharmacokinetic results on naproxen prodrugs based on poly(ethyleneglycol)s. J. Biomater. Sci. Polym. Ed. 6: 141-147   DOI   ScienceOn
5 Sunitha, K., J. K. Lee, and T. K. Oh. 1999. Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess. Biosyst. Eng. 21: 477-481   DOI
6 Tammara, V. K., M. M. Narurkar, A. M. Crider, and M. A. Khan. 1993. Synthesis and evaluation of morpholinoalkyl ester prodrugs of indomethacin and naproxen. Pharm. Res. 10: 1191-1199   DOI   ScienceOn
7 Yasmin, T., T. Jiang, B. Han, J. Zhang, and X. Ma. 2006. Transesterification reaction catalysed by Novozym 435 in supercritical carbon dioxide. J. Mol. Catal. B Enzym. 41: 27-31   DOI   ScienceOn
8 Dominguez, A. P. M., D. Bizani, F. Cladera-Olivera, and A. Brandelli. 2007. Cerein 8A production in soybean protein using response surface methodology. Biochem. Eng. J. 35: 238-243   DOI   ScienceOn
9 Franck, E. U. and R. Deul. 1978. Dielectric behavior of methanol and related polar fluids at high pressures and temperatures. Faraday Discuss. Chem. Soc. 66: 191-198   DOI
10 Shieh, C. J., H. F. Liao, and C. C. Lee. 2003. Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresource Technol. 88: 103-106   DOI   ScienceOn
11 Chi, Y. M., K. Nakamura, and T. Yano. 1988. Enzymic interesterification in supercritical carbon dioxide. Agric. Biol. Chem. 52: 1541-1550   DOI
12 Shang, C. S. and C. S. Hsu. 2003. Lipase-catalyzed enantioselective esterification of (S)-naproxen hydroxyalkyl ester in organic media. Biotechnol. Lett. 25: 413-416   DOI   ScienceOn
13 Wu, J.-Y. and M.-T. Liang. 1999. Enhancement of enantioselectivity by altering alcohol concentration for esterification in supercritical $CO_2$. J. Chem. Eng. Japan 32: 338-340   DOI   ScienceOn
14 Hayball, P. J. 1996. Chirality and nonsteroidal anti-inflammatory drugs. Drugs 52: 47-58   PUBMED
15 Chiang, K. T. 2007. Modeling and optimization of designing parameters for a parallel-plain fin heat sink with confined impinging jet using the response surface methodology. Appl. Therm. Eng. 27: 2473-2482   DOI   ScienceOn
16 Basheer, S., K. Mogi, and M. Nakajima. 1995. Surfactantmodified lipase for the catalysis of the interesterification of triglycerides and fatty acids. Biotechnol. Bioeng. 45: 187-195   DOI   ScienceOn
17 Tsai, S. W., S. F. Lin, and C. S. Chang. 1999. Lipase-catalyzed enantioselective esterification of S(+)-naproxen ester prodrugs in cyclohexane. J. Chem. Technol. Biotechnol. 74: 751-758   DOI   ScienceOn
18 Goldberg, M., D. Thomas, and M. D. Legoy. 1990. The control of lipase-catalysed transesterification and esterification rates. Effects of substrate polarity, water activity and water molecules on enzyme activity. Eur. J. Biochem. 190: 603-609   DOI   ScienceOn
19 Cui, Y.-M., D.-Z. Wei, and J.-T. Yu. 1997. Lipase-catalyzed esterification in organic solvent to resolve racemic naproxen. Biotechnol. Lett. 19: 865-868   DOI   ScienceOn
20 Rocha, J., M. Gil, and F. Garcia. 1999. Optimisation of the enzymatic synthesis of noctyl oleate with immobilised lipase in the absence of solvents. J. Chem. Technol. Biotechnol. 74: 607-612   DOI   ScienceOn
21 Kamat, S. V., E. J. Beckman, and A. J. Russell. 1995. Enzyme activity in supercritical fluids. Crit. Rev. Biotechnol. 15: 41-71   DOI   ScienceOn
22 Shanbhag, V. R., A. M. Crider, R. Gokhale, A. Harpalani, and R. M. Dick. 1992. Ester and amide prodrugs of ibuprofen and naproxen: Synthesis, anti-inflammatory activity, and gastrointestinal toxicity. J. Pharm. Sci. 81: 149-154   DOI   PUBMED
23 Lim, J. S., M. C. Park, J. H. Lee, S. W. Park, and S. W. Kim. 2005. Optimization of culture medium and conditions for neofructooligosaccharides production by Penicillium citrinum. Eur. Food Res. Technol. 221: 639-644   DOI   ScienceOn
24 Mundra, P., K. Desai, and S. S. Lele. 2007. Application of response surface methodology to cell immobilization for the production of palatinose. Bioresour. Technol. 98: 2892-2896   DOI   ScienceOn
25 Nnakamura, K., Y. M. Chi, Y. Yamada, and T. Yano. 1986. Lipase activity and stability in supercritical carbon dioxide. Chem. Eng. Commun. 45: 207-212   DOI
26 Junco, S., T. Casimiro, N. Ribeiro, M. D. Ponte, and H. M. Marques. 2002. Optimisation of supercritical carbon dioxide systems for complexation of naproxen: Beta-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 44: 69-73   DOI   ScienceOn