Browse > Article

Functional expression of CalB in E.coli  

Kim, Hyun-Sook (Department of Chemical Engineering, Kwangwoon University)
Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University)
Publication Information
KSBB Journal / v.23, no.5, 2008 , pp. 445-448 More about this Journal
Abstract
Candida antarctica lipase B (CalB) is an efficient biocatalyst for many organic synthesis reactions. To make full use of CalB, we need effective expression system. Previously recombinant CalB was successfully expressed in the methylotropic yeast Pichia pastoris. In addition, we succeed in the functional expression of CalB in the Escherichia coli cytoplasm. This CalB expression system in E.coli has many considerable advantages in comparison with other expression systems and enables high-throughput screening of gene libraries as those derived from directed evolution experiments. To optimize E.coli system, we investigate comparing between OrigamiB (DE3) and BL21 (DE3) and observing effect of IPTG amount.
Keywords
Lipase; Candida antarctica lipase; OrigamiB; cold-shock promoter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Taipa, M. A., Aires-Barros, M. R., and Cabral, J. M. (1992), Purification of lipases, J. Biotechnol. 26, 111-142   DOI   ScienceOn
2 Blank, K., Morfill, J., Gumpp, H., and Gaub, H. E. (2006), Functional expression of Candida antarctica lipase B in Eschericha coli, J. Biotechnol. 125, 474-483   DOI   ScienceOn
3 Hoegh, I., Patkar, S., Halkier, T., and Hansen, M. T. (1995), Two lipases from Candida antarctica: cloning and expression in Aspergillus oryzae, Can. J. Bot. 73, 869-875   DOI   ScienceOn
4 Rotticci-Mulder, J. C., Gustavsson, M., Holmquist, M., Hult, K., and Martinelle, M. (2001), Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain, Protein Expr. Purif. 21, 386-392   DOI   ScienceOn
5 Xia, B., Etchegaray, J. P., and Inouye, M. (2001), Nonsense Mutations in cspA Cause Ribosome Trapping Leading to Complete Growth Inhibition and Cell Death at Low Temperature in Escherichia coli, J. Biol. Chem. 276, 35581-35588   DOI   ScienceOn
6 Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V. T., Mal, T. K., Takayama, M. M., Xia, B., Phadtare, S., Ke, H., Acton, T., Montelione, G. T., Ikura, M., and Inouye, M. (2004), Cold-shock induced high-yield protein production in Escherichia coli, Nat. Biotechnol. 22, 877-882   DOI   ScienceOn
7 Cha, H. J., Srivastava, R., Vakharia, V. N., Rao, G., and Bentry, W. E. (1999), Green fluorescent protein as a noninvasive stress probe in resting Escherichia coli cells, Appl. Environ. Microbiol. 65, 409-41
8 Mitta, M., Fang, L., and Inouye, M. (1997), Deletion analysis of cspA of Escherichia coli requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction, Mol. Microbiol. 26, 321-335   DOI   ScienceOn
9 Kleber-Janke, T. and Becker, W. M. (2000), Use of modified BL21 (DE3) Escherichia coli cells, Protein Expr. Purif. 19, 419-424   DOI   ScienceOn
10 Liu, D., Schmid, R. D., and Rusnak, M. (2006), Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm, Appl. Microbiol. Biotechnol. 72, 1024-1032   DOI   ScienceOn
11 Prinz, W. A., Aslund, F., Holmgren, A., and Beckwith, J. (1997), The Role of the Thioredoxin and Glutaredoxin Pathways in Reducing Protein Disulfide Bonds in the Escherichia coli Cytoplasm, J. Biol. Chem. 272, 15661-15667   DOI   ScienceOn
12 Jung, S. and Park, S. (2008), Improving the expression yield of Candida antarctica lipase B in Escherichia coli by mutagenesis, Biotechnol. Lett. 30, 717-722   DOI   ScienceOn
13 Zhang, N., Suen, W. C., Windsor, W., Xiao, L., Madison, V., and Zaks, A. (2003), Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution, Protein Eng. 16, 599-605   DOI   ScienceOn