Browse > Article
http://dx.doi.org/10.7845/kjm.2015.5037

Exploration and functional expression of homologous lipases of Candida antarctica lipase B  

Park, Seongsoon (Department of Chemistry, Center for NanoBio Applied Technology, and Institute of Basic Sciences, Sungshin Women's University)
Publication Information
Korean Journal of Microbiology / v.51, no.3, 2015 , pp. 187-193 More about this Journal
Abstract
Candida (also known as Pseudozyma) antarctica lipase B (CAL-B) has been intensely studied in academic and industrial fields. However, the research related to its homologous enzymes has been rarely reported. In the current investigation, protein sequence similarity search of CAL-B has been conducted and six homologous protein sequences were identified. After the syntheses of their codon-optimized genes, the synthetic genes have been cloned into a periplasmic expression vector to express in Escherichia coli. Among six homologous sequences, four sequences were successfully expressed in E. coli. The hydrolytic activities of the expressed proteins towards 4-nitrophenyl acetate and 4-nitrophenyl butyrate were measured and compared with those of CAL-B to identify whether the expressed proteins work as a hydrolase. It has been revealed that the expressed proteins can hydrolyze the substrates and the specific activities were determined as $(1.3-30){\times}10^{-2}{\mu}mol/min/mg$, which are lower than those of CAL-B. Among these homologous enzymes, Pseudozyma hubeiensis SY62 exhibits the comparable enantioselectivity to that of CAL-B towards the hydrolysis of (${\pm}$)-1-phenylethyl acetate.
Keywords
heterologous expression; homology; lipase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Andualema, B. and Gessesse, A. 2012. Microbial lipases and their industrial applications: review. Biotechnol. 11, 100-118.   DOI
2 Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M., and Sonnhammer, E.L.L. 2002. The Pfam protein families database. Nucleic Acids Res. 30, 276-280.   DOI
3 Blank, K., Morfill, J., Gumpp, H., and Gaub, H.E. 2006. Functional expression of Candida antarctica lipase B in Escherichia coli. J. Biotechnol. 125, 474-483.   DOI
4 Boekhout, T. 1995. Pseudozyma Bandoni emend. Boekhout, a genus for yeast-like anamorphs of ustilaginales. J. Gen. Appl. Microbiol. 41, 359-366.   DOI
5 Bornscheuer, U.T. and Kazlauskas, R.J. 2006. Hydrolases in Organic Synthesis. 2nd. Wiley-VCH, Weinheim, Germany.
6 Bornscheuer, U.T. and Pohl, M. 2001. Improved biocatalysts by directed evolution and rational protein design. Curr. Opin. Chem. Biol. 5, 137-143.   DOI
7 Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., et al. 1990. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343, 767-770.   DOI
8 Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Jensen, B., Patkar, S.A., and Thim, L. 1991. A model for interfacial activation in lipases from the structure of a fungal lipaseinhibitor complex. Nature 351, 491-494.   DOI
9 Carbone, M.N. and Arnold, F.H. 2007. Engineering by homologous recombination: exploring sequence and function within a conserved fold. Curr. Opin. Struct. Biol. 17, 454-459.   DOI
10 Chodorge, M., Fourage, L., Ullmann, C., Duvivier, V., Masson, J.M., and Lefevre, F. 2005. Rational strategies for directed evolution of biocatalysts-application to Candida antarctica lipase B (CALB). Adv. Synth. Catal. 347, 1022-1026.   DOI
11 Crameri, A., Raillard, S.A., Bermudez, E., and Stemmer, W.P.C. 1998. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288-291.   DOI
12 Hoegh, I., Patkar, S., Halkier, T., and Hansen, M.T. 1995. Two lipases from Candida antarctica: Cloning and expression in Aspergillus oryzae. Can. J. Bot. 73, 869-875.   DOI
13 Grochulski, P., Li, Y., Schrag, J.D., Bouthillier, F., Smith, P., Harrison, D., Rubin, B., and Cygler, M. 1993. Insights into interfacial activation from an open structure of Candida rugosa lipase. J. Biol. Chem. 268, 12843-12847.
14 Grochulski, P., Li, Y., Schrag, J.D., and Cygler, M. 1994. Two conformational states of Candida rugosa lipase. Protein Sci. 3, 82-91.
15 Gross, R.A., Kumar, A., and Kalra, B. 2001. Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. 101, 2097-2124.   DOI
16 Janes, L.E., Cimpoia, A., and Kazlauskas, R.J. 1999. Proteasemediated separation of cis and trans diastereomers of 2(R,S)-benzyloxymethyl-4(S)-carboxylic acid 1,3-dioxolane methyl ester: intermediates for the synthesis of dioxolane nucleosides. J. Org. Chem. 64, 9019-9029.   DOI
17 Jung, S. and Park, S. 2008. Improving the expression yield of Candida antarctica lipase B in Escherichia coli by mutagenesis. Biotechnol. Lett. 30, 717-722.   DOI
18 Liu, D., Schmid, R.D., and Rusnak, M. 2006. Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm - a screening system for a frequently used biocatalyst. Appl. Microbiol. Biotechnol. 72, 1024-103.   DOI
19 Martinelle, M., Holmquist, M., and Hult, K. 1995. On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim. Biophys. Acta 1258, 272-276.   DOI
20 Neylon, C. 2004. Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res. 32, 1448-1459.   DOI
21 Schmid, R.D. and Verger, R. 1998. Lipases: interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. 37, 1608-1633.   DOI
22 Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., and Silman, I. 1992. The alpha/beta hydrolase fold. Protein Eng. 5, 197-211.   DOI
23 Rotticci, D. 2003. Understanding and engineering the enantioselectivity of Candida antarctica lipase B towards sec-alcohols, Ph.D. thesis, KTH, Stockholm, Sweden.
24 Rotticci-Mulder, J.C., Gustavsson, M., Holmquist, M., Hult, K., and Martinelle, M. 2001. Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain. Protein Expr. Purif. 21, 386-392.   DOI
25 Takwa, M., Wittrup Larsen, M., Hult, K., and Martinelle, M. 2011. Rational redesign of Candida antarctica lipase B for the ring opening polymerization of D,D-lactide. Chem. Commun. 47, 7392-7394.   DOI
26 Uppenberg, J., Oehrner, N., Norin, M., Hult, K., Kleywegt, G.J., Patkar, S., Waagen, V., Anthonsen, T., and Jones, T.A. 1995. Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochem. 34, 16838-16851.   DOI
27 van der Mee, L., Helmich, F., de Bruijn, R., Vekemans, J.A.J.M., Palmans, A.R.A., and Meijer, E.W. 2006. Investigation of lipase-catalyzed ring-opening polymerizations of lactones with various ring sizes: kinetic evaluation. Macromolecules 39, 5021-5027.   DOI
28 Verger, R. 1997. Interfacial activation of lipases: facts and artifacts. Trends Biotechnol. 15, 32-38.   DOI
29 Zhang, N., Suen, W.C., Windsor, W., Xiao, L., Madison, V., and Zaks, A. 2003. Improving tolerance of Candida antartica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng. 16, 599-605.   DOI
30 Wu, Q., Soni, P., and Reetz, M.T. 2013. Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope. J. Am. Chem. Soc. 135, 1872-1881.   DOI