• Title/Summary/Keyword: Cancer therapeutics

Search Result 547, Processing Time 0.027 seconds

A new paradigm for cancer therapeutics development

  • Kim, Soo-Youl
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.383-388
    • /
    • 2010
  • The number of cancer patients has increased due to longer life spans and treatment has become a universal problem. Since molecular-targeted therapies were introduced as a new developmental strategy, certain targets have been examined hundreds of times, with developers overlapping their research efforts. We need to focus our energy and resources on novel drug candidate identification and optimization, in order to enhance the entry of early-stage drug candidates into the therapeutics pipeline. This presents a major opportunity for Korea to jump the decades-old development gap between our programs and those that are more advanced in other countries. Although this country does not have a specific center for validation and development of cancer therapeutics, we do have cutting-edge scientists performing research in many institutions. In this paper, I will review cancer drug development in Korea and suggest future directions, while urging colleagues to utilize their networking expertise so we can move toward a new paradigm of novel therapeutics development. An example of such efforts has begun with the Drug Development Consortium, which was described in the KSBMB chapter. This consortium was launched in 2010 by biochemists, chemists, cell and molecular biologists and pharmacologists. It is clear that effective cancer therapeutics will be developed more efficiently when we all strive for the same goal.

Dual Roles of Autophagy and Their Potential Drugs for Improving Cancer Therapeutics

  • Shin, Dong Wook
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.503-511
    • /
    • 2020
  • Autophagy is a major catabolic process that maintains cell metabolism by degrading damaged organelles and other dysfunctional proteins via the lysosome. Abnormal regulation of this process has been known to be involved in the progression of pathophysiological diseases, such as cancer and neurodegenerative disorders. Although the mechanisms for the regulation of autophagic pathways are relatively well known, the precise regulation of this pathway in the treatment of cancer remains largely unknown. It is still complicated whether the regulation of autophagy is beneficial in improving cancer. Many studies have demonstrated that autophagy plays a dual role in cancer by suppressing the growth of tumors or the progression of cancer development, which seems to be dependent on unknown characteristics of various cancer types. This review summarizes the key targets involved in autophagy and malignant transformation. In addition, the opposing tumor-suppressive and oncogenic roles of autophagy in cancer, as well as potential clinical therapeutics utilizing either regulators of autophagy or combinatorial therapeutics with anti-cancer drugs have been discussed.

The oncogenic effects of p53-inducible gene 3 (PIG3) in colon cancer cells

  • Park, Seon-Joo;Kim, Hong Beum;Kim, Jeeho;Park, Sanggon;Kim, Seok Won;Lee, Jung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.267-273
    • /
    • 2017
  • The p53-inducible gene 3 (PIG3), initially identified as a gene downstream of p53, plays an important role in the apoptotic process triggered by p53-mediated reactive oxygen species (ROS) production. Recently, several studies have suggested that PIG3 may play a role in various types of cancer. However, the functional significance of PIG3 in cancer remains unclear. Here, we found that PIG3 was highly expressed in human colon cancer cell lines compared to normal colon-derived fibroblasts. Therefore, we attempted to elucidate the functional role of PIG3 in colon cancer. PIG3 overexpression increases the colony formation, migration and invasion ability of HCT116 colon cancer cells. Conversely, these tumorigenic abilities were significantly decreased in in vitro studies with PIG3 knockdown HCT116 cells. PIG3 knockdown also attenuated the growth of mouse xenograft tumors. These results demonstrate that PIG3 is associated with the tumorigenic potential of cancer cells, both in vitro and in vivo, and could play a key oncogenic role in colon cancer.

Therapeutic aptamers: developmental potential as anticancer drugs

  • Lee, Ji Won;Kim, Hyun Jung;Heo, Kyun
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.234-237
    • /
    • 2015
  • Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a second targeting CXCL12 - are currently undergoing clinical trials for treating cancer patients, and many more are under study. In this mini-review, we present the current clinical status of aptamers and aptamer-based cancer therapeutics. We also discuss advantages, limitations, and prospects for aptamers as cancer therapeutics. [BMB Reports 2015; 48(4): 234-237]

PIG3 Regulates p53 Stability by Suppressing Its MDM2-Mediated Ubiquitination

  • Jin, Min;Park, Seon-Joo;Kim, Seok Won;Kim, Hye Rim;Hyun, Jin Won;Lee, Jung-Hee
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.396-403
    • /
    • 2017
  • Under normal, non-stressed conditions, intracellular p53 is continually ubiquitinated by MDM2 and targeted for degradation. However, in response to severe genotoxic stress, p53 protein levels are markedly increased and apoptotic cell death is triggered. Inhibiting the ubiquitination of p53 under conditions where DNA damage has occurred is therefore crucial for preventing the development of cancer, because if cells with severely damaged genomes are not removed from the population, uncontrolled growth can result. However, questions remain about the cellular mechanisms underlying the regulation of p53 stability. In this study, we show that p53-inducible gene 3 (PIG3), which is a transcriptional target of p53, regulates p53 stability. Overexpression of PIG3 stabilized both endogenous and transfected wild-type p53, whereas a knockdown of PIG3 lead to a reduction in both endogenous and UV-induced p53 levels in p53-proficient human cancer cells. Using both in vivo and in vitro ubiquitination assays, we found that PIG3 suppressed both ubiquitination- and MDM2-dependent proteasomal degradation of p53. Notably, we demonstrate that PIG3 interacts directly with MDM2 and promoted MDM2 ubiquitination. Moreover, elimination of endogenous PIG3 in p53-proficient HCT116 cells decreased p53 phosphorylation in response to UV irradiation. These results suggest an important role for PIG3 in regulating intracellular p53 levels through the inhibition of p53 ubiquitination.

Future Cancer Therapy with Molecularly Targeted Therapeutics: Challenges and Strategies

  • Kim, Mi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.371-389
    • /
    • 2011
  • A new strategy for cancer therapy has emerged during the past decade based on molecular targets that are less likely to be essential in all cells in the body, therefore confer a wider therapeutic window than traditional cytotoxic drugs which mechanism of action is to inhibit essential cellular functions. Exceptional heterogeneity and adaptability of cancer impose significant challenges in oncology drug discovery, and the concept of complex tumor biology has led the framework of developing many anticancer therapeutics. Protein kinases are the most pursued targets in oncology drug discovery. To date, 12 small molecule kinase inhibitors have been approved by US Food and Drug Administration, and many more are in clinical development. With demonstrated clinical efficacy of bortezomib, ubiquitin proteasome and ubiquitin-like protein conjugation systems are also emerging as new therapeutic targets in cancer therapy. In this review, strategies of targeted cancer therapies with inhibitors of kinases and proteasome systems are discussed. Combinational cancer therapy to overcome drug resistance and to achieve greater treatment benefit through the additive or synergistic effects of each individual agent is also discussed. Finally, the opportunities in the future cancer therapy with molecularly targeted anticancer therapeutics are addressed.