Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.300

Cancer Metabolism: a Hope for Curing Cancer  

Kim, Soo-Youl (Cancer Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center)
Publication Information
Biomolecules & Therapeutics / v.26, no.1, 2018 , pp. 1-3 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature 481, 306-313.   DOI
2 Harada, K., Miyake, H., Kumano, M. and Fujisawa, M. (2013) Acquired resistance to temsirolimus in human renal cell carcinoma cells is mediated by the constitutive activation of signal transduction pathways through mTORC2. Br. J. Cancer 109, 2389-2395.   DOI
3 Hawley, S. A., Fullerton, M. D., Ross, F. A., Schertzer, J. D., Chevtzoff, C., Walker, K. J., Peggie, M. W., Zibrova, D., Green, K. A., Mustard, K. J., Kemp, B. E., Sakamoto, K., Steinberg, G. R. and Hardie, D. G. (2012) The ancient drug salicylate directly activates AMPactivated protein kinase. Science 336, 918-922.   DOI
4 Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R. J., Pleven, E. and Scheiner, J. (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179, 663-666.   DOI
5 Janku, F., McConkey, D. J., Hong, D. S. and Kurzrock, R. (2011) Autophagy as a target for anticancer therapy. Nat. Rev. Clin. Oncol. 8, 528-539.   DOI
6 Jung, B.-J., Yoo, H.-S., Shin, S., Park, H.-J. and Jeon, S.-M. (2018) Dysregulation of NRF2 in cancer: from molecular mechanisms to therapeutic opportunities. Biomol. Ther. (Seoul) 26, 57-68.   DOI
7 Kim, J.-A. and Yeom, Y. I. (2018) Metabolic signaling to epigenetic alterations in cancer. Biomol. Ther. (Seoul) 26, 69-80.   DOI
8 Kim, S. Y. (2015a) Cancer metabolism: strategic diversion from targeting cancer drivers to targeting cancer suppliers. Biomol. Ther. (Seoul) 23, 99-109.   DOI
9 Kim, S. Y. (2015b) Cancer metabolism: targeting cancer universality. Arch. Pharm. Res. 38, 299-301.   DOI
10 Kim, S.-Y. (2018) Cancer energy metabolism: shutting power off cancer factory. Biomol. Ther. (Seoul) 26, 39-44.   DOI
11 Vogelstein, B. and Kinzler, K. W. (1993) The multistep nature of cancer. Trends Genet. 9, 138-141.   DOI
12 Min, H.-Y. and Lee, H.-Y. (2018) Oncogene-driven metabolic alterations in cancer. Biomol. Ther. (Seoul) 26, 45-56.   DOI
13 Momcilovic, M. and Shackelford, D. B. (2018) Imaging cancer metabolism. Biomol. Ther. (Seoul) 26, 81-92.   DOI
14 Neugent, M. L., Goodwin, J., Sankaranarayanan, I., Yetkin, C. E., Hsieh, M. H. and Kim, J.-w. (2018) A new perspective on the heterogeneity of cancer glycolysis. Biomol. Ther. (Seoul) 26, 10-18.   DOI
15 Michelakis, E. D., Webster, L. and Mackey, J. R. (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer 99, 989-994.   DOI
16 Sabatini, D. M. (2006) mTOR and cancer: insights into a complex relationship. Nat. Rev. Cancer 6, 729-734.
17 Samudio, I., Harmancey, R., Fiegl, M., Kantarjian, H., Konopleva, M., Korchin, B., Kaluarachchi, K., Bornmann, W., Duvvuri, S., Taegtmeyer, H. and Andreeff, M. (2010) Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 120, 142-156.   DOI
18 Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O. and Dewhirst, M. W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930-3942.
19 Cho, E. S., Cha, Y. H., Kim, H. S., Kim, N. H. and Yook, J. I. (2018) The pentose phosphate pathway as a potential target for cancer therapy. Biomol. Ther. (Seoul) 26, 29-38.   DOI
20 Cao, Z., Fan-Minogue, H., Bellovin, D. I., Yevtodiyenko, A., Arzeno, J., Yang, Q., Gambhir, S. S. and Felsher, D. W. (2011) MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase. Cancer Res. 71, 2286-2297.   DOI
21 Choi, Y.-K. and Park, K.-G. (2018) Targeting glutamine metabolism for cancer treatment. Biomol. Ther. (Seoul) 26, 19-28.   DOI
22 Dang, C. V. and Kim, J.-w. (2018) Convergence of cancer metabolism and immunity: an overview. Biomol. Ther. (Seoul) 26, 4-9.   DOI
23 Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J. and Lydon, N. B. (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561-566.   DOI
24 El-Mir, M. Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M. and Leverve, X. (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223-228.   DOI
25 Engelman, J. A., Luo, J. and Cantley, L. C. (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606-619.
26 Gabor Miklos, G. L. (2005) The human cancer genome project--one more misstep in the war on cancer. Nat. Biotechnol. 23, 535-537.   DOI
27 Galluzzi, L., Kepp, O., Vander Heiden, M. G. and Kroemer, G. (2013) Metabolic targets for cancer therapy. Nat. Rev. Drug Discov. 12, 829-846.   DOI
28 Weinberg, R. A. (1989) Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 49, 3713-3721.