References
- Cao, Z., Fan-Minogue, H., Bellovin, D. I., Yevtodiyenko, A., Arzeno, J., Yang, Q., Gambhir, S. S. and Felsher, D. W. (2011) MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase. Cancer Res. 71, 2286-2297. https://doi.org/10.1158/0008-5472.CAN-10-3367
- Cho, E. S., Cha, Y. H., Kim, H. S., Kim, N. H. and Yook, J. I. (2018) The pentose phosphate pathway as a potential target for cancer therapy. Biomol. Ther. (Seoul) 26, 29-38. https://doi.org/10.4062/biomolther.2017.179
- Choi, Y.-K. and Park, K.-G. (2018) Targeting glutamine metabolism for cancer treatment. Biomol. Ther. (Seoul) 26, 19-28. https://doi.org/10.4062/biomolther.2017.178
- Dang, C. V. and Kim, J.-w. (2018) Convergence of cancer metabolism and immunity: an overview. Biomol. Ther. (Seoul) 26, 4-9. https://doi.org/10.4062/biomolther.2017.194
- Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J. and Lydon, N. B. (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561-566. https://doi.org/10.1038/nm0596-561
- El-Mir, M. Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M. and Leverve, X. (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223-228. https://doi.org/10.1074/jbc.275.1.223
- Engelman, J. A., Luo, J. and Cantley, L. C. (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606-619.
- Gabor Miklos, G. L. (2005) The human cancer genome project--one more misstep in the war on cancer. Nat. Biotechnol. 23, 535-537. https://doi.org/10.1038/nbt0505-535
- Galluzzi, L., Kepp, O., Vander Heiden, M. G. and Kroemer, G. (2013) Metabolic targets for cancer therapy. Nat. Rev. Drug Discov. 12, 829-846. https://doi.org/10.1038/nrd4145
- Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature 481, 306-313. https://doi.org/10.1038/nature10762
- Harada, K., Miyake, H., Kumano, M. and Fujisawa, M. (2013) Acquired resistance to temsirolimus in human renal cell carcinoma cells is mediated by the constitutive activation of signal transduction pathways through mTORC2. Br. J. Cancer 109, 2389-2395. https://doi.org/10.1038/bjc.2013.602
- Hawley, S. A., Fullerton, M. D., Ross, F. A., Schertzer, J. D., Chevtzoff, C., Walker, K. J., Peggie, M. W., Zibrova, D., Green, K. A., Mustard, K. J., Kemp, B. E., Sakamoto, K., Steinberg, G. R. and Hardie, D. G. (2012) The ancient drug salicylate directly activates AMPactivated protein kinase. Science 336, 918-922. https://doi.org/10.1126/science.1215327
- Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R. J., Pleven, E. and Scheiner, J. (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179, 663-666. https://doi.org/10.1038/179663a0
- Janku, F., McConkey, D. J., Hong, D. S. and Kurzrock, R. (2011) Autophagy as a target for anticancer therapy. Nat. Rev. Clin. Oncol. 8, 528-539. https://doi.org/10.1038/nrclinonc.2011.71
- Jung, B.-J., Yoo, H.-S., Shin, S., Park, H.-J. and Jeon, S.-M. (2018) Dysregulation of NRF2 in cancer: from molecular mechanisms to therapeutic opportunities. Biomol. Ther. (Seoul) 26, 57-68. https://doi.org/10.4062/biomolther.2017.195
- Kim, J.-A. and Yeom, Y. I. (2018) Metabolic signaling to epigenetic alterations in cancer. Biomol. Ther. (Seoul) 26, 69-80. https://doi.org/10.4062/biomolther.2017.185
- Kim, S. Y. (2015a) Cancer metabolism: strategic diversion from targeting cancer drivers to targeting cancer suppliers. Biomol. Ther. (Seoul) 23, 99-109. https://doi.org/10.4062/biomolther.2015.013
- Kim, S. Y. (2015b) Cancer metabolism: targeting cancer universality. Arch. Pharm. Res. 38, 299-301. https://doi.org/10.1007/s12272-015-0551-5
- Kim, S.-Y. (2018) Cancer energy metabolism: shutting power off cancer factory. Biomol. Ther. (Seoul) 26, 39-44. https://doi.org/10.4062/biomolther.2017.184
- Michelakis, E. D., Webster, L. and Mackey, J. R. (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer 99, 989-994. https://doi.org/10.1038/sj.bjc.6604554
- Min, H.-Y. and Lee, H.-Y. (2018) Oncogene-driven metabolic alterations in cancer. Biomol. Ther. (Seoul) 26, 45-56. https://doi.org/10.4062/biomolther.2017.211
- Momcilovic, M. and Shackelford, D. B. (2018) Imaging cancer metabolism. Biomol. Ther. (Seoul) 26, 81-92. https://doi.org/10.4062/biomolther.2017.220
- Neugent, M. L., Goodwin, J., Sankaranarayanan, I., Yetkin, C. E., Hsieh, M. H. and Kim, J.-w. (2018) A new perspective on the heterogeneity of cancer glycolysis. Biomol. Ther. (Seoul) 26, 10-18. https://doi.org/10.4062/biomolther.2017.210
- Sabatini, D. M. (2006) mTOR and cancer: insights into a complex relationship. Nat. Rev. Cancer 6, 729-734.
- Samudio, I., Harmancey, R., Fiegl, M., Kantarjian, H., Konopleva, M., Korchin, B., Kaluarachchi, K., Bornmann, W., Duvvuri, S., Taegtmeyer, H. and Andreeff, M. (2010) Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 120, 142-156. https://doi.org/10.1172/JCI38942
- Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O. and Dewhirst, M. W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930-3942.
- Vogelstein, B. and Kinzler, K. W. (1993) The multistep nature of cancer. Trends Genet. 9, 138-141. https://doi.org/10.1016/0168-9525(93)90209-Z
- Weinberg, R. A. (1989) Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 49, 3713-3721.
Cited by
- Targeting cancer energy metabolism: a potential systemic cure for cancer vol.42, pp.2, 2019, https://doi.org/10.1007/s12272-019-01115-2
- The Metabolic Inhibitor CPI-613 Negates Treatment Enrichment of Ovarian Cancer Stem Cells vol.11, pp.11, 2019, https://doi.org/10.3390/cancers11111678
- Role of Mitochondria-Cytoskeleton Interactions in the Regulation of Mitochondrial Structure and Function in Cancer Stem Cells vol.9, pp.7, 2020, https://doi.org/10.3390/cells9071691