Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.155

Dual Roles of Autophagy and Their Potential Drugs for Improving Cancer Therapeutics  

Shin, Dong Wook (College of Biomedical and Health Science, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.28, no.6, 2020 , pp. 503-511 More about this Journal
Abstract
Autophagy is a major catabolic process that maintains cell metabolism by degrading damaged organelles and other dysfunctional proteins via the lysosome. Abnormal regulation of this process has been known to be involved in the progression of pathophysiological diseases, such as cancer and neurodegenerative disorders. Although the mechanisms for the regulation of autophagic pathways are relatively well known, the precise regulation of this pathway in the treatment of cancer remains largely unknown. It is still complicated whether the regulation of autophagy is beneficial in improving cancer. Many studies have demonstrated that autophagy plays a dual role in cancer by suppressing the growth of tumors or the progression of cancer development, which seems to be dependent on unknown characteristics of various cancer types. This review summarizes the key targets involved in autophagy and malignant transformation. In addition, the opposing tumor-suppressive and oncogenic roles of autophagy in cancer, as well as potential clinical therapeutics utilizing either regulators of autophagy or combinatorial therapeutics with anti-cancer drugs have been discussed.
Keywords
Autophagy; Cancer; Target; Anti-tumor drug; Combinational therapy;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Wang, Y., Xu, W., Yan, Z., Zhao, W., Mi, J., Li, J. and Yan, H. (2018) Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J. Exp. Clin. Cancer Res. 37, 63.   DOI
2 White, E., Mehnert, J. M. and Chan, C. S. (2015) Autophagy, metabolism, and cancer. Clin. Cancer Res. 21, 5037-5046.   DOI
3 Yang, L., Wan, J., Xiao, S., Barkhouse, D., Zhu, J., Li, G., Lu, B. and Zhang, Z. (2016) BH3 mimetic ABT-737 sensitizes colorectal cancer cells to ixazomib through MCL-1 downregulation and autophagy inhibition. Am. J. Cancer Res. 6, 1345-1357.
4 Yang, Y. P., Hu, L. F., Zheng, H. F., Mao, C. J., Hu, W. D., Xiong, K. P., Wang, F. and Liu, C. F. (2013) Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin. 34, 625-635.   DOI
5 Yorimitsu, T. and Klionsky, D. J. (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ. 12, 1542-1552.   DOI
6 Yu, H., Yin, S., Zhou, S., Shao, Y., Sun, J., Pang, X., Han, L., Zhang, Y., Gao, X., Jin, C., Qiu, Y. and Wang, T. (2018) Magnolin promotes autophagy and cell cycle arrest via blocking LIF/Stat3/Mcl-1 axis in human colorectal cancers. Cell Death Dis. 9, 702.   DOI
7 Yuan, N., Song, L., Zhang, S., Lin, W., Cao, Y., Xu, F., Fang, Y., Wang, Z., Zhang, H., Li, X., Wang, Z., Cai, J., Wang, J., Zhang, Y., Mao, X., Zhao, W., Hu, S., Chen, S. and Wang, J. (2015) Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 100, 345-356.   DOI
8 Zaffagnini, G., Savova, A., Danieli, A., Romanov, J., Tremel, S., Ebner, M., Peterbauer, T., Sztacho, M., Trapannone, R., Tarafder, A. K., Sachse, C. and Martens, S. (2018) p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. 37, e98308.   DOI
9 Lee, I. H., Cao, L., Mostoslavsky, R., Lombard, D. B., Liu, J., Bruns, N. E., Tsokos, M., Alt, F. W. and Finkel, T. (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. U.S.A. 105, 3374-3379.   DOI
10 Li, J., Chong, T., Wang, Z., Chen, H., Li, H., Cao, J., Zhang, P. and Li, H. (2014) A novel anticancer effect of resveratrol: reversal of epithelialmesenchymal transition in prostate cancer cells. Mol. Med. Rep. 10, 1717-1724.   DOI
11 Li, J. and Hochstrasser, M. (2020) Microautophagy regulates proteasome homeostasis. Curr. Genet. 66, 683-687.   DOI
12 Li, L. Q., Xie, W. J., Pan, D., Chen, H. and Zhang, L. (2016) Inhibition of autophagy by bafilomycin A1 promotes chemosensitivity of gastric cancer cells. Tumour Biol. 37, 653-659.   DOI
13 Li, Y. and Chen, Y. (2019) AMPK and autophagy. Adv. Exp. Med. Biol. 1206, 85-108.   DOI
14 Li, Z., Oh, D. Y., Nakamura, K. and Thiele, C. J. (2011) Perifosine-induced inhibition of Akt attenuates brain-derived neurotrophic factor/TrkB-induced chemoresistance in neuroblastoma in vivo. Cancer 117, 5412-5422.   DOI
15 Li, Z., Tan, F., Liewehr, D. J., Steinberg, S. M. and Thiele, C. J. (2010) In vitro and in vivo inhibition of neuroblastoma tumor cell growth by AKT inhibitor perifosine. J. Natl. Cancer Inst. 102, 758-770.   DOI
16 Liu, J., Long, S., Wang, H., Liu, N., Zhang, C., Zhang, L. and Zhang, Y. (2019) Blocking AMPK/ULK1-dependent autophagy promoted apoptosis and suppressed colon cancer growth. Cancer Cell Int. 19, 336.   DOI
17 Liu, L., McKeehan, W. L., Wang, F. and Xie, R. (2012) MAP1S enhances autophagy to suppress tumorigenesis. Autophagy 8, 278-280.   DOI
18 Lou, Z., Ren, T., Peng, X., Sun, Y., Jiao, G., Lu, Q., Zhang, S., Lu, X. and Guo, W. (2013) Bortezomib induces apoptosis and autophagy in osteosarcoma cells through mitogen-activated protein kinase pathway in vitro. J. Int. Med. Res. 41, 1505-1519.   DOI
19 Liu, M., Bamodu, O. A., Huang, W. C., Zucha, M. A., Lin, Y. K., Wu, A. T. H., Huang, C. C., Lee, W. H., Yuan, C. C., Hsiao, M., Deng, L., Tzeng, Y. M. and Yeh, C. T. (2017) 4-Acetylantroquinonol B suppresses autophagic flux and improves cisplatin sensitivity in highly aggressive epithelial cancer through the PI3K/Akt/mTOR/p70S6K signaling pathway. Toxicol. Appl. Pharm. 325, 48-60.   DOI
20 Liu, W., Huang, S., Chen, Z., Wang, H., Wu, H. and Zhang, D. (2014) Temsirolimus, the mTOR inhibitor, induces autophagy in adenoid cystic carcinoma: in vitro and in vivo. Pathol. Res. Pract. 210, 764-769.   DOI
21 Zhu, K., Dunner, K., Jr. and McConkey, D. J. (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29, 451-462.   DOI
22 Zanotto-Filho, A., Braganhol, E., Klafke, K., Figueiro, F., Terra, S. R., Paludo, F. J., Morrone, M., Bristot, I. J., Battastini, A. M., Forcelini, C. M., Bishop, A. J. R., Gelain, D. P. and Moreira, J. C. F. (2015) Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 358, 220-231.   DOI
23 Zhang, X., Li, W., Wang, C., Leng, X., Lian, S., Feng, J., Li, J. and Wang, H. (2014) Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells. Mol. Cell. Biochem. 385, 265-275.   DOI
24 Zhao, X., Fang, Y., Yang, Y., Qin, Y., Wu, P., Wang, T., Lai, H., Meng, L., Wang, D., Zheng, Z., Lu, X., Zhang, H., Gao, Q., Zhou, J. and Ma, D. (2015) Elaiophylin, a novel autophagy inhibitor, exerts antitumor activity as a single agent in ovarian cancer cells. Autophagy 11, 1849-1863.   DOI
25 Xu, H. D. and Qin, Z. H. (2019) Beclin 1, bcl-2 and autophagy. Adv. Exp. Med. Biol. 1206, 109-126.   DOI
26 Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K. J., Coppes, R. P., Engedal, N., Mari, M. and Reggiori, F. (2018) Chloroquine inhibits autophagic flux by decreasing autophagosomelysosome fusion. Autophagy 14, 1435-1455.   DOI
27 Mahalingam, D., Mita, M., Sarantopoulos, J., Wood, L., Amaravadi, R. K., Davis, L. E., Mita, A. C., Curiel, T. J., Espitia, C. M., Nawrocki, S. T., Giles, F. J. and Carew, J. S. (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10, 1403-1414.   DOI
28 Marino, G., Salvador-Montoliu, N., Fueyo, A., Knecht, E., Mizushima, N. and Lopez-Otin, C. (2007) Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J. Biol. Chem. 282, 18573-18583.   DOI
29 Marquez, R. T. and Xu, L. (2012) Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am. J. Cancer Res. 2, 214-221.
30 Mishra, A. K. and Dingli, D. (2019) Metformin inhibits IL-6 signaling by decreasing IL-6R expression on multiple myeloma cells. Leukemia 33, 2695-2709.   DOI
31 Mizushima, N. (2007) Autophagy: process and function. Genes Dev. 21, 2861-2873.   DOI
32 Momcilovic, M. and Shackelford, D. B. (2018) Imaging cancer metabolism. Biomol. Ther. (Seoul) 26, 81-92.   DOI
33 Morselli, E., Marino, G., Bennetzen, M. V., Eisenberg, T., Megalou, E., Schroeder, S., Cabrera, S., Benit, P., Rustin, P., Criollo, A., Kepp, O., Galluzzi, L., Shen, S., Malik, S. A., Maiuri, M. C., Horio, Y., Lopez-Otin, C., Andersen, J. S., Tavernarakis, N., Madeo, F. and Kroemer, G. (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615-629.   DOI
34 Park, J. M., Jung, C. H., Seo, M., Otto, N. M., Grunwald, D., Kim, K. H., Moriarity, B., Kim, Y. M., Starker, C., Nho, R. S., Voytas, D. and Kim, D. H. (2016) The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12, 547-564.   DOI
35 Moscat, J. and Diaz-Meco, M. T. (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001-1004.   DOI
36 Mowers, E. E., Sharifi, M. N. and Macleod, K. F. (2017) Autophagy in cancer metastasis. Oncogene 36, 1619-1630.   DOI
37 Neri, L. M., Cani, A., Martelli, A. M., Simioni, C., Junghanss, C., Tabellini, G., Ricci, F., Tazzari, P. L., Pagliaro, P., McCubrey, J. A. and Capitani, S. (2014) Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 28, 739-748.   DOI
38 Patel, S., Hurez, V., Nawrocki, S. T., Goros, M., Michalek, J., Sarantopoulos, J., Curiel, T. and Mahalingam, D. (2016) Vorinostat and hydroxychloroquine improve immunity and inhibit autophagy in metastatic colorectal cancer. Oncotarget 7, 59087-59097.   DOI
39 Petroni, G., Bagni, G., Iorio, J., Duranti, C., Lottini, T., Stefanini, M., Kragol, G., Becchetti, A. and Arcangeli, A. (2020) Clarithromycin inhibits autophagy in colorectal cancer by regulating the hERG1 potassium channel interaction with PI3K. Cell Death Dis. 11, 161.   DOI
40 Periyasamy-Thandavan, S., Jackson, W. H., Samaddar, J. S., Erickson, B., Barrett, J. R., Raney, L., Gopal, E., Ganapathy, V., Hill, W. D., Bhalla, K. N. and Schoenlein, P. V. (2010) Bortezomib blocks the catabolic process of autophagy via a cathepsin-dependent mechanism, affects endoplasmic reticulum stress and induces caspase-dependent cell death in antiestrogen-sensitive and resistant ER+ breast cancer cells. Autophagy 6, 19-35.   DOI
41 Rangwala, R., Leone, R., Chang, Y. C., Fecher, L. A., Schuchter, L. M., Kramer, A., Tan, K. S., Heitjan, D. F., Rodgers, G., Gallagher, M., Piao, S., Troxel, A. B., Evans, T. L., DeMichele, A. M., Nathanson, K. L., O'Dwyer, P. J., Kaiser, J., Pontiggia, L., Davis, L. E. and Amaravadi, R. K. (2014a) Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10, 1369-1379.   DOI
42 Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E. L., Mizushima, N., Ohsumi, Y., Cattoretti, G. and Levine, B. (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809-1820.   DOI
43 Racoma, I. O., Meisen, W. H., Wang, Q. E., Kaur, B. and Wani, A. A. (2013) Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS ONE 8, e72882.   DOI
44 Ramakrishnan, S., Nguyen, T. M., Subramanian, I. V. and Kelekar, A. (2007) Autophagy and angiogenesis inhibition. Autophagy 3, 512-515.
45 Bhat, P., Kriel, J., Shubha Priya, B., Basappa, Shivananju, N. S. and Loos, B. (2018) Modulating autophagy in cancer therapy: advancements and challenges for cancer cell death sensitization. Biochem. Pharmacol. 147, 170-182.   DOI
46 Altman, J. K. and Platanias, L. C. (2012) A new purpose for an old drug: inhibiting autophagy with clarithromycin. Leuk. Lymphoma 53, 1255-1256.   DOI
47 Amaravadi, R., Kimmelman, A. C. and White, E. (2016) Recent insights into the function of autophagy in cancer. Genes Dev. 30, 1913-1930.   DOI
48 Ben Sahra, I., Tanti, J. F. and Bost, F. (2010) The combination of metformin and 2-deoxyglucose inhibits autophagy and induces AMPK-dependent apoptosis in prostate cancer cells. Autophagy 6, 670-671.   DOI
49 Bilanges, B., Posor, Y. and Vanhaesebroeck, B. (2019) PI3K isoforms in cell signalling and vesicle trafficking. Nat. Rev. Mol. Cell Biol. 20, 515-534.   DOI
50 Rangwala, R., Chang, Y. C., Hu, J., Algazy, K. M., Evans, T. L., Fecher, L. A., Schuchter, L. M., Torigian, D. A., Panosian, J. T., Troxel, A. B., Tan, K. S., Heitjan, D. F., DeMichele, A. M., Vaughn, D. J., Redlinger, M., Alavi, A., Kaiser, J., Pontiggia, L., Davis, L. E., O'Dwyer, P. J. and Amaravadi, R. K. (2014b) Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10, 1391-1402.   DOI
51 Richardson, P. G., Eng, C., Kolesar, J., Hideshima, T. and Anderson, K. C. (2012) Perifosine, an oral, anti-cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin. Drug Metab. Toxicol. 8, 623-633.   DOI
52 Chen, N. and Karantza-Wadsworth, V. (2009) Role and regulation of autophagy in cancer. Biochim. Biophys. Acta 1793, 1516-1523.   DOI
53 Brana, I., Ocana, A., Chen, E. X., Razak, A. R., Haines, C., Lee, C., Douglas, S., Wang, L., Siu, L. L., Tannock, I. F. and Bedard, P. L. (2014) A phase I trial of pantoprazole in combination with doxorubicin in patients with advanced solid tumors: evaluation of pharmacokinetics of both drugs and tissue penetration of doxorubicin. Invest. New Drugs 32, 1269-1277.   DOI
54 Busca, R., Bertolotto, C., Ortonne, J. P. and Ballotti, R. (1996) Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J. Biol. Chem. 271, 31824-31830.   DOI
55 Carew, J. S., Medina, E. C., Esquivel, J. A., 2nd, Mahalingam, D., Swords, R., Kelly, K., Zhang, H., Huang, P., Mita, A. C., Mita, M. M., Giles, F. J. and Nawrocki, S. T. (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J. Cell. Mol. Med. 14, 2448-2459.   DOI
56 Cave, D. D., Desiderio, V., Mosca, L., Ilisso, C. P., Mele, L., Caraglia, M., Cacciapuoti, G. and Porcelli, M. (2018) S-Adenosylmethionine-mediated apoptosis is potentiated by autophagy inhibition induced by chloroquine in human breast cancer cells. J. Cell. Physiol. 233, 1370-1383.   DOI
57 Chang, S. B., Miron, P., Miron, A. and Iglehart, J. D. (2007) Rapamycin inhibits proliferation of estrogen-receptor-positive breast cancer cells. J. Surg. Res. 138, 37-44.   DOI
58 Cook, K. L., Warri, A., Soto-Pantoja, D. R., Clarke, P. A., Cruz, M. I., Zwart, A. and Clarke, R. (2014) Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin. Cancer Res. 20, 3222-3232.   DOI
59 Chiao, M. T., Cheng, W. Y., Yang, Y. C., Shen, C. C. and Ko, J. L. (2013) Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy 9, 1509-1526.   DOI
60 Cicchini, M., Karantza, V. and Xia, B. (2015) Molecular pathways: autophagy in cancer--a matter of timing and context. Clin. Cancer Res. 21, 498-504.   DOI
61 Crowe, S. E. (2019) Helicobacter pylori Infection. N. Engl. J. Med. 380, 1158-1165.   DOI
62 Galluzzi, L., Pietrocola, F., Bravo-San Pedro, J. M., Amaravadi, R. K., Baehrecke, E. H., Cecconi, F., Codogno, P., Debnath, J., Gewirtz, D. A., Karantza, V., Kimmelman, A., Kumar, S., Levine, B., Maiuri, M. C., Martin, S. J., Penninger, J., Piacentini, M., Rubinsztein, D. C., Simon, H. U., Simonsen, A., Thorburn, A. M., Velasco, G., Ryan, K. M. and Kroemer, G. (2015) Autophagy in malignant transformation and cancer progression. EMBO J. 34, 856-880.   DOI
63 Russell, R. C., Tian, Y., Yuan, H., Park, H. W., Chang, Y. Y., Kim, J., Kim, H., Neufeld, T. P., Dillin, A. and Guan, K. L. (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741-750.   DOI
64 Russell, R. C., Yuan, H. X. and Guan, K. L. (2014) Autophagy regulation by nutrient signaling. Cell Res. 24, 42-57.   DOI
65 Danhier, P., Banski, P., Payen, V. L., Grasso, D., Ippolito, L., Sonveaux, P. and Porporato, P. E. (2017) Cancer metabolism in space and time: beyond the Warburg effect. Biochim. Biophys. Acta 1858, 556-572.   DOI
66 El-Mowafy, A. M. and Alkhalaf, M. (2003) Resveratrol activates adenylyl-cyclase in human breast cancer cells: a novel, estrogen receptor-independent cytostatic mechanism. Carcinogenesis 24, 869-873.   DOI
67 Galati, S., Boni, C., Gerra, M. C., Lazzaretti, M. and Buschini, A. (2019) Autophagy: a player in response to oxidative stress and DNA damage. Oxid. Med. Cell. Longev. 2019, 5692958.
68 Sesen, J., Dahan, P., Scotland, S. J., Saland, E., Dang, V. T., Lemarie, A., Tyler, B. M., Brem, H., Toulas, C., Cohen-Jonathan Moyal, E., Sarry, J. E. and Skuli, N. (2015) Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response. PLoS ONE 10, e0123721.   DOI
69 Saha, A., Blando, J., Tremmel, L. and DiGiovanni, J. (2015) Effect of metformin, rapamycin, and their combination on growth and progression of prostate tumors in HiMyc mice. Cancer Prev. Res. (Phila.) 8, 597-606.   DOI
70 Sell, S., Nicolini, A., Ferrari, P. and Biava, P. M. (2016) Cancer: a problem of developmental biology; scientific evidence for reprogramming and differentiation therapy. Curr. Drug Targets 17, 1103-1110.   DOI
71 Shukla, S., Patric, I. R., Patil, V., Shwetha, S. D., Hegde, A. S., Chandramouli, B. A., Arivazhagan, A., Santosh, V. and Somasundaram, K. (2014) Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth. J. Biol. Chem. 289, 22306-22318.   DOI
72 Su, Z., Yang, Z., Xu, Y., Chen, Y. and Yu, Q. (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer 14, 48.   DOI
73 Sun, F. D., Wang, P. C., Shang, J., Zou, S. H. and Du, X. (2018) Ibrutinib presents antitumor activity in skin cancer and induces autophagy. Eur. Rev. Med. Pharmacol. Sci. 22, 561-566.
74 Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., Eishi, Y., Hino, O., Tanaka, K. and Mizushima, N. (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795-800.   DOI
75 Dang, C. V. and Kim, J. W. (2018) Convergence of cancer metabolism and immunity: an overview. Biomol. Ther. (Seoul) 26, 4-9.   DOI
76 Gammoh, N., Lam, D., Puente, C., Ganley, I., Marks, P. A. and Jiang, X. (2012) Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc. Natl. Acad. Sci. U.S.A. 109, 6561-6565.   DOI
77 Golden, E. B., Cho, H. Y., Hofman, F. M., Louie, S. G., Schonthal, A. H. and Chen, T. C. (2015) Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurg. Focus 38, E12.
78 Grewe, M., Gansauge, F., Schmid, R. M., Adler, G. and Seufferlein, T. (1999) Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 59, 3581-3587.
79 Hare, S. H. and Harvey, A. J. (2017) mTOR function and therapeutic targeting in breast cancer. Am. J. Cancer Res. 7, 383-404.
80 Tamargo-Gomez, I. and Marino, G. (2018) AMPK: regulation of metabolic dynamics in the context of autophagy. Int. J. Mol. Sci. 19, 3812.   DOI
81 Hori, Y. S., Hosoda, R., Akiyama, Y., Sebori, R., Wanibuchi, M., Mikami, T., Sugino, T., Suzuki, K., Maruyama, M., Tsukamoto, M., Mikuni, N., Horio, Y. and Kuno, A. (2015) Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. J. Neurooncol. 122, 11-20.   DOI
82 Hou, H., Zhang, Y., Huang, Y., Yi, Q., Lv, L., Zhang, T., Chen, D., Hao, Q. and Shi, Q. (2012) Inhibitors of phosphatidylinositol 3'-kinases promote mitotic cell death in HeLa cells. PLoS ONE 7, e35665.   DOI
83 Huang, Z. (2000) Small molecule inhibitors of Bcl-2 function: modulators of apoptosis and promising anticancer agents. Curr. Opin. Drug Discov. Devel. 3, 565-574.
84 Vignot, S., Faivre, S., Aguirre, D. and Raymond, E. (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol. 16, 525-537.   DOI
85 Tripathi, R., Ash, D. and Shaha, C. (2014) Beclin-1-p53 interaction is crucial for cell fate determination in embryonal carcinoma cells. J. Cell. Mol. Med. 18, 2275-2286.   DOI
86 Tsujimoto, Y. and Shimizu, S. (2015) Another way to die: autophagic programmed cell death. Cell Death Differ. 12, 1528-1534.   DOI
87 Umemura, A., He, F., Taniguchi, K., Nakagawa, H., Yamachika, S., Font-Burgada, J., Zhong, Z., Subramaniam, S., Raghunandan, S., Duran, A., Linares, J. F., Reina-Campos, M., Umemura, S., Valasek, M. A., Seki, E., Yamaguchi, K., Koike, K., Itoh, Y., Diaz-Meco, M. T., Moscat, J. and Karin, M. (2016) p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29, 935-948.   DOI
88 Vogl, D. T., Stadtmauer, E. A., Tan, K. S., Heitjan, D. F., Davis, L. E., Pontiggia, L., Rangwala, R., Piao, S., Chang, Y. C., Scott, E. C., Paul, T. M., Nichols, C. W., Porter, D. L., Kaplan, J., Mallon, G., Bradner, J. E. and Amaravadi, R. K. (2014) Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10, 1380-1390.   DOI
89 Wan, B., Zang, Y. and Wang, L. (2018) Overexpression of Beclin1 inhibits proliferation and promotes apoptosis of human laryngeal squamous carcinoma cell Hep-2. Onco Targets Ther. 11, 3827-3833.   DOI
90 Wang, G., Zhou, P., Chen, X., Zhao, L., Tan, J., Yang, Y., Fang, Y. and Zhou, J. (2017) The novel autophagy inhibitor elaiophylin exerts antitumor activity against multiple myeloma with mutant TP53 in part through endoplasmic reticulum stress-induced apoptosis. Cancer Biol. Ther. 18, 584-595.   DOI
91 Kang, R., Zeh, H. J., Lotze, M. T. and Tang, D. (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18, 571-580.   DOI
92 Jimenez-Guerrero, R., Gasca, J., Flores, M. L., Perez-Valderrama, B., Tejera-Parrado, C., Medina, R., Tortolero, M., Romero, F., Japon, M. A. and Saez, C. (2018) Obatoclax and paclitaxel synergistically induce apoptosis and overcome paclitaxel resistance in urothelial cancer cells. Cancers (Basel) 10, 490.   DOI
93 Jung, C. H., Seo, M., Otto, N. M. and Kim, D. H. (2011) ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 7, 1212-1221.   DOI
94 Jung, D., Khurana, A., Roy, D., Kalogera, E., Bakkum-Gamez, J., Chien, J. and Shridhar, V. (2018) Quinacrine upregulates p21/p27 independent of p53 through autophagy-mediated downregulation of p62-Skp2 axis in ovarian cancer. Sci. Rep. 8, 2487.   DOI
95 Guo, J. Y. and White, E. (2016) Autophagy, metabolism, and cancer. Cold Spring Harb. Symp. Quant. Biol. 81, 73-78.
96 Kocaturk, N. M., Akkoc, Y., Kig, C., Bayraktar, O., Gozuacik, D. and Kutlu, O. (2019) Autophagy as a molecular target for cancer treatment. Eur. J. Pharm. Sci. 134, 116-137.   DOI
97 Kao, C., Chao, A., Tsai, C. L., Chuang, W. C., Huang, W. P., Chen, G. C., Lin, C. Y., Wang, T. H., Wang, H. S. and Lai, C. H. (2014) Bortezomib enhances cancer cell death by blocking the autophagic flux through stimulating ERK phosphorylation. Cell Death Dis. 5, e1510.   DOI
98 Kaushik, S. and Cuervo, A. M. (2018) The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365-381.   DOI
99 Kimmelman, A. C. and White, E. (2017) Autophagy and tumor metabolism. Cell Metab. 25, 1037-1043.   DOI
100 Koehler, B. C., Jassowicz, A., Scherr, A. L., Lorenz, S., Radhakrishnan, P., Kautz, N., Elssner, C., Weiss, J., Jaeger, D., Schneider, M. and Schulze-Bergkamen, H. (2015) Pan-Bcl-2 inhibitor obatoclax is a potent late stage autophagy inhibitor in colorectal cancer cells independent of canonical autophagy signaling. BMC Cancer 15, 919.   DOI
101 Kuma, A., Komatsu, M. and Mizushima, N. (2017) Autophagy-monitoring and autophagy-deficient mice. Autophagy 13, 1619-1628.   DOI