• 제목/요약/키워드: Cancer stem cell

검색결과 411건 처리시간 0.028초

LY294002 Induces G0/G1 Cell Cycle Arrest and Apoptosis of Cancer Stem-like Cells from Human Osteosarcoma Via Down-regulation of PI3K Activity

  • Gong, Chen;Liao, Hui;Wang, Jiang;Lin, Yang;Qi, Jun;Qin, Liang;Tian, Lin-Qiang;Guo, Feng-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3103-3107
    • /
    • 2012
  • Osteosarcoma, the most common primary mesenchymal malignant tumor, usually has bad prognosis in man, with cancer stem-like cells (CSCs) considered to play a critical role in tumorigenesis and drug-resistance. It is known that phosphatidylinositol 3-kinase (PI3K) is involved in regulation of tumor cell fates, such as proliferation, cell cycling, survival and apoptosis. Whether and how PI3K and inhibitors might cooperate in human osteosarcoma CSCs is still unknown. We therefore evaluated the effects of LY294002, a PI3K inhibitor, on the cell cycle and apoptosis of osteosarcoma CSCs in vitro. LY294002 prevented phosphorylation of protein kinase B (PKB/Akt) by inhibition of PI3K phosphorylation activity, thereby inducing G0/G1 cell cycle arrest and apoptosis in osteosarcoma CSCs. Further studies also demonstrated that apoptosis induction by LY294002 is accompanied by activation of caspase-9, caspase-3 and PARP, which are involved in the mitochondrial apoptosis pathway. Therefore, our results indicate PI3K inhibitors may represent a potential strategy for managing human osteosarcoma via affecting CSCs.

Prognostic Significance of Expression of CD133 and Ki-67 in Gastric Cancer

  • Saricanbaz, Irem;Karahacioglu, Eray;Ekinci, Ozgur;Bora, Huseyin;Kilic, Diclehan;Akmansu, Muge
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권19호
    • /
    • pp.8215-8219
    • /
    • 2014
  • CD133 is one of the most important stem cell markers in solid cancers and Ki-67 is a marker that reflects cell proliferation. The relationships between the expression of CD133 and Ki-67 and prognosis in gastric carcinoma are unknown and need exploring. We examined 50 gastric cancer patients retrospectively in the Radiation Oncology Department of the Faculty of Medicine, Gazi University. CD133 and Ki-67 expression was examined using immunohistochemical staining. The survival rate in patients with CD133 positive expression was significantly worse than that in the patients with negative expression (p=0.04). Expression of CD133 had a positive correlation with that of Ki-67 (r=0.350; p=0.014). Multivariate analysis revealed that the expression of CD133 was an independent prognostic factor in gastric cancer (p=0.02). Conclusion, expression of CD133 may be a useful prognostic marker in gastric cancer.

Critical diagnostic and cancer stem cell markers in neoplastic cells from canine primary and xenografted pulmonary adenocarcinoma

  • Warisraporn, Tangchang;YunHyeok, Kim;Ye-In, Oh;Byung-Woo, Lee;Hyunwook, Kim;Byungil, Yoon
    • Journal of Veterinary Science
    • /
    • 제23권6호
    • /
    • pp.89.1-89.7
    • /
    • 2022
  • It is challenging to diagnose metastatic tumors whose cellular morphology is different from the primary. We characterized canine primary pulmonary adenocarcinoma (PAC) and its xenografted tumors by histological and immunohistochemical analyses for critical diagnostic and cancer stem cell (CSC) markers. To generate a tumor xenograft model, we subsequently transplanted the tissue pieces from the PAC into athymic nude mice. Immunohistochemical examination was performed for diagnostic (TTF-1, Napsin A, and SP-A) and CSC markers (CD44 and CD133). The use of CSC markers together with diagnostic markers can improve the detection and diagnosis of canine primary and metastatic adenocarcinomas.

Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties

  • Hong Kyu Lee;Yun-Jung Na;Su-Min Seong;Dohee Ahn;Kyung-Chul Choi
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.368-378
    • /
    • 2024
  • Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.

마우스 유방암 모델에서 5-Aza-2'-deoxycytidine의 암줄기세포 유지 억제 효과 (5-Aza-2'-deoxycytidine Inhibits the Maintenance of Cancer Stem Cell in a Mouse Model of Breast Cancer)

  • 노경진;양인숙;김란주;김수림;박정란;정지윤;조성대;남정석
    • 생명과학회지
    • /
    • 제19권8호
    • /
    • pp.1164-1169
    • /
    • 2009
  • 비정상적 DNA메칠화는 암 발생에 있어 중요한 역할을 한다. 최근 연구에 의하면 암줄기세포 유지에 있어 DNA과메칠화가 연관되어 있다고 보고하고 있다. 따라서 본 연구는 4T1 유방암 실험모델에서 demethylating agent인 AZA 처리에 따른 후성유전적 변화가 암줄기세포의 유지 및 증식에 있어 어떠한 영향을 미치는지 조사 하였다. 4T1 세포에서 AZA 처리에 따른 tumorsphere 형성이 감소 하는 것을 in vitro 실험을 통해 관찰 하였고, in vivo 실험에서는 줄기세포 조절 유전자들 (Oct-4, Nanog. Sox2)의 발현이 감소 되는 것을 확인 하였다. 본 연구 결과로 볼 때 4T1 유방암 실험모델에서 AZA에 의한 후성유전적 변화는 줄기세포 조절 유전자(SRG)들의 발현을 조절하면서 암줄기세포 특성을 변화시켜 암줄기세포의 증식 및 유지를 억제 할 것으로 사료된다. 향후 이러한 DNA 메칠화 억제를 항암치료에 응용하면, 암줄기세포를 파괴함으로써 암의 재발 및 악성화를 효과적으로 제어 할 수 있을 것으로 사료된다.

Identification of DNA Aptamers toward Epithelial Cell Adhesion Molecule via Cell-SELEX

  • Kim, Ji Won;Kim, Eun Young;Kim, Sun Young;Byun, Sang Kyung;Lee, Dasom;Oh, Kyoung-Jin;Kim, Won Kon;Han, Baek Soo;Chi, Seung-Wook;Lee, Sang Chul;Bae, Kwang-Hee
    • Molecules and Cells
    • /
    • 제37권10호
    • /
    • pp.742-746
    • /
    • 2014
  • The epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is specifically detected in most adenocarcinomas and cancer stem cells. In this study, we performed a Cell systematic evolution of ligands by exponential enrichment (SELEX) experiment to isolate the aptamers against EpCAM. After seven round of Cell SELEX, we identified several aptamer candidates. Among the selected aptamers, EP166 specifically binds to cells expressing EpCAM with an equilibrium dissociation constant (Kd) in a micromolar range. On the other hand, it did not bind to negative control cells. Moreover, EP166 binds to J1ES cells, a mouse embryonic stem cell line. Therefore, the isolated aptamers against EpCAM could be used as a stem cell marker or in other applications in both stem cell and cancer studies.

Kaposi's Sarcoma-Associated Herpesvirus Infection Modulates the Proliferation of Glioma Stem-Like Cells

  • Jeon, Hyungtaek;Kang, Yun Hee;Yoo, Seung-Min;Park, Myung-Jin;Park, Jong Bae;Lee, Seung-Hoon;Lee, Myung-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.165-174
    • /
    • 2018
  • Glioblastoma multiforme is the most lethal malignant brain tumor. Despite many intensive studies, the prognosis of glioblastoma multiforme is currently very poor, with a median overall survival duration of 14 months and 2-year survival rates of less than 10%. Although viral infections have been emphasized as potential cofactors, their influences on pathways that support glioblastoma progression are not known. Some previous studies indicated that human Kaposi's sarcoma-associated herpesvirus (KSHV) was detected in healthy brains, and its microRNA was also detected in glioblastoma patients' plasma. However, a direct link between KSHV infection and glioblastoma is currently not known. In this study, we infected glioblastoma cells and glioma stem-like cells (GSCs) with KSHV to establish an in vitro cell model for KSHV-infected glioblastoma cells and glioma stem-like cells in order to identify virologic outcomes that overlap with markers of aggressive disease. Latently KSHV-infected glioblastoma cells and GSCs were successfully established. Additionally, using these cell models, we found that KSHV infection modulates the proliferation of glioma stem-like cells.

1981年度 韓國動物學會 秋季學術大會 特別講演 要旨: Resistance to Carcinogens at Early Developmental Stages and the Latent Period of Induced Neoplasms

  • 근등종평
    • 한국동물학회지
    • /
    • 제25권1호
    • /
    • pp.29-29
    • /
    • 1982
  • Carcinogenesis is extremely complex. Therefore, it is paradoxical but nonetheless important in cancer research if, in an animal whose parental strains are normally sensitive to cancer induction, we could find mutant strains which are resistant to various carcinogens as a result of mutations in one or two genes. No such mutants have been reported so far as I am aware but we do know that at early stages in their development, fish, mice, and humans are highly resistant to cancer induction by chemicals and radiation. I will give a brief overview of the stage-dependent resistance of fish, mice and humans to cancer induction and discuss the stem-cell mutation theory to explain the cancer-resistant stages. Finally, the latent period of induced neoplasms will be discussed in relation to the stem-cell mutation theory.

  • PDF

다형성 교모세포종의 항생제 내성 종양 줄기세포 (Chemotherapeutic Drug Resistant Cancer Stem-like Cells of Glioma)

  • 강미경;강수경
    • 생명과학회지
    • /
    • 제17권8호통권88호
    • /
    • pp.1039-1045
    • /
    • 2007
  • 다형성 교모세포종은 뇌종양 가운데 가장 빈번하게 발병하는 악성종양이다. 다형성 교모세포종에 종양 줄기세포가 존재한다는 보고가 있음에도 불구하고, 항암제 내성과 종양 줄기세포 사이의 상호 연관성에 관한 연구는 아직 미비한 실정이다. 본 연구에서 다형성 교모세포종 세포주 A172 및 뇌종양 환자로부터 확립한 GBM2에 1,3-bis(2 -chloroethyl)-1-nitrosourea (BiCNU)를 처리시 극소량의 세포군만이 생존하며, 이들 생존 세포군은 BiCNU 재처리에 내성을 나타내는 것으로 조사되었다. 또한 이 다형성 교모세포종 유래 BiCNU-내성세포군의 Erk 및 Akt 인산화 활성이 증가되었으며, CD133 줄기세포 표지인자를 발현하는 세포가 다량 존재하였다. 이와 아울러, 다형성 교모세포종 유래 BiCNU-내성세포를 severe combined immuno-deficient (SCID) mouse brain에 이식하였을 때 암이 형성되는 것을 관찰할 수 있었다. 이와 같은 결과는 다형성 교모세포종 유래 BiCNU-내성세포가 종양줄기세포의 능력을 가지는 것으로 생각된다. 따라서 이상의 결과는 다형성 교모세포종에 존재하는 종양줄기세포가 항암제 내성에 관여 한다는 중요한 단서를 제공해줄 수 있을 것으로 사료된다.

Stem Cell Properties of Gastric Cancer Stem-Like Cells under Stress Conditions Are Regulated via the c-Fos/UCH-L3/β-Catenin Axis

  • Jae Hyeong Lee;Sang-Ah Park;Il-Geun Park;Bo Kyung Yoon;Jung-Shin Lee;Ji Min Lee
    • Molecules and Cells
    • /
    • 제46권8호
    • /
    • pp.476-485
    • /
    • 2023
  • Gastric cancer stem-like cells (GCSCs) possess stem cell properties, such as self-renewal and tumorigenicity, which are known to induce high chemoresistance and metastasis. These characteristics of GCSCs are further enhanced by autophagy, worsening the prognosis of patients. Currently, the mechanisms involved in the induction of stemness in GCSCs during autophagy remain unclear. In this study, we compared the cellular responses of GCSCs with those of gastric cancer intestinal cells (GCICs) whose stemness is not induced by autophagy. In response to glucose starvation, the levels of β-catenin and stemness-related genes were upregulated in GCSCs, while the levels of β-catenin declined in GCICs. The pattern of deubiquitinase ubiquitin C-terminal hydrolase-L3 (UCH-L3) expression in GCSCs and GCICs was similar to that of β-catenin expression depending on glucose deprivation. We also observed that inhibition of UCH-L3 activity reduced β-catenin protein levels. The interaction between UCH-L3 and β-catenin proteins was confirmed, and it reduced the ubiquitination of β-catenin. Our results suggest that UCH-L3 induces the stabilization of β-catenin, which is required to promote stemness during autophagy activation. Also, UCH-L3 expression was regulated by c-Fos, and the levels of c-Fos increased in response to autophagy activation. In summary, our findings suggest that the inhibition of UCH-L3 during nutrient deprivation could suppress stress resistance of GCSCs and increase the survival rates of gastric cancer patients.