Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.8.1164

5-Aza-2'-deoxycytidine Inhibits the Maintenance of Cancer Stem Cell in a Mouse Model of Breast Cancer  

Nho, Kyoung-Jin (Center of Animal Care and Use)
Yang, In-Sook (Center of Animal Care and Use)
Kim, Ran-Ju (Lab. of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science)
Kim, Soo-Rim (Lab. of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science)
Park, Jeong-Ran (Lab. of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science)
Jung, Ji-Youn (Dept. of Companion and Laboratory Animal Science, Kongju National University)
Cho, Sung-Dae (Dept. of Oral Pathology, School of Dentistry, Chonbuk National University)
Nam, Jeong-Seok (Lab. of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science)
Publication Information
Journal of Life Science / v.19, no.8, 2009 , pp. 1164-1169 More about this Journal
Abstract
Aberrant DNA methylation plays an important role in the development of cancer. It has been reported recently that DNA hypermethylation is involved in the maintenance of cancer stem cells. The present study was designed to test the hypothesis that the demethylating agent, 5-aza-2'-deoxycytidine (AZA), can inhibit the potential for maintenance of cancer stem cells. To validate this hypothesis, we used 4T1 syngeneic mouse models of breast cancer. The AZA pre-treated 4T1 cells showed a dramatic inhibition of tumorsphere formation, compared to their counterparts in vitro. In addition, the AZA treatment significantly suppressed the expression of stem regulator genes, such as oct-4, nanog and sox2, compared to counterparts in vivo. Therefore, selective inhibition of DNA methylation may be useful for stem-specific cancer therapy.
Keywords
5-aza-2'-deoxycytidine; DNA methylation; cancer stem cell; stem regulator gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ohm, J. E., K. M. McGarvey, X. Yu, L. Cheng, K. E. Schuebel, L. Cope, H. P. Mohammad, W. Chen, V. C. Daniel, W. Yu, D. M. Berman, T. Jenuwein, K. Pruitt, S. J. Sharkis, D. N. Watkins, J. G. Herman, and S. B. Baylin. 2007. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39, 237-242   DOI   ScienceOn
2 Patel, A., J. D. Groopman, and A. Umar. 2003. DNA methylation as a cancer-specific biomarker: from molecules to populations. Ann. N Y. Acad. Sci. 983, 286-297   DOI   ScienceOn
3 Ponti, D., A. Costa, N. Zaffaroni, G. Pratesi, G. Petrangolini, D. Coradini, S. Pilotti, M. A. Pierotti, and M. G. Daidone. 2005. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506-5511   DOI   ScienceOn
4 Esteller, M. 2003. Relevance of DNA methylation in the management of cancer. Lancet Oncol. 4, 351-358   DOI   ScienceOn
5 Esteller, M. 2005. Dormant hypermethylated tumour suppressor genes: questions and answers. J. Pathol. 205, 172-180   DOI   ScienceOn
6 Feinberg, A. P. and B. Tycko. 2004. The history of cancer epigenetics. Nat. Rev. Cancer 4, 143-153   DOI   ScienceOn
7 Garinis, G. A., G. P. Patrinos, N. E. Spanakis, and P. G. Menounos. 2002. DNA hypermethylation: when tumour suppressor genes go silent. Hum. Genet. 111, 115-127   DOI   ScienceOn
8 Herman, J. G. and S. B. Baylin. 2003. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042-2054   DOI   ScienceOn
9 Jones, P. A. and S. B. Baylin. 2002. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415-428   DOI   ScienceOn
10 Al-Hajj, M. and M. F. Clarke. 2004. Self-renewal and solid tumor stem cells. Oncogene 23, 7274-7282   DOI   ScienceOn
11 Brown, R. and G. Strathdee. 2002. Epigenomics and epigenetic therapy of cancer. Trends Mol. Med. 8 (4Suppl), S43-48   DOI   ScienceOn
12 Calvanese, V., A. Horrillo, A. Hmadcha, B. Suarez-Alvarez, A. F. Fernandez, E. Lara, S. Casado, P. Menendez, C. Bueno, J. Garcia-Castro, R. Rubio, P. Lapunzina, M. Alaminos, L. Borghese, S. Terstegge, N. J. Harrison, H. D. Moore, O. Brustle, C. Lopez-Larrea, P. W. Andrews, B. Soria, M. Esteller, and M. F. Fraga. 2008. Cancer genes hypermethylated in human embryonic stem cells. PLoS One 3, e3294
13 Szyf, M., P. Pakneshan, and S. A. Rabbani. 2004. DNA methylation and breast cancer. Biochem. Pharmacol. 68, 1187-1197   DOI   ScienceOn
14 Schulz, W. A. and M. J. Hoffmann. 2007. Transcription factor networks in embryonic stem cells and testicular cancer and the definition of epigenetics. Epigenetics 2, 37-42   DOI
15 Smalley, M. and A. Ashworth. 2003. Stem cells and breast cancer: A field in transit. Nat. Rev. Cancer 3, 832-844   DOI   ScienceOn
16 Suzuki, H., D. N. Watkins, K. W. Jair, K. E. Schuebel, S. D. Markowitz, W. D. Chen, T. P. Pretlow, B. Yang, Y. Akiyama, M. Van Engeland, M. Toyota, T. Tokino, Y. Hinoda, K. Imai, J. G. Herman, and S. B. Baylin. 2004. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat. Genet. 36, 417-422   DOI   ScienceOn
17 Turner, C., A. R. Stinchcombe, M. Kohandel, S. Singh, and S. Sivaloganathan. 2009. Characterization of brain cancer stem cells: a mathematical approach. Cell Prolif. 42, 529-540   DOI   ScienceOn
18 Verma, M. and S. Srivastava. 2002. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol. 3, 755-763   DOI   ScienceOn
19 Widschwendter, M., H. Fiegl, D. Egle, E. Mueller-Holzner, G. Spizzo, C. Marth, D. J. Weisenberger, M. Campan, J. Young, I. Jacobs, and P. W. Laird. 2007. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157-158   DOI   ScienceOn
20 Wachsman, J. T. 1997. DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat. Res. 375, 1-8   DOI   ScienceOn
21 McGarvey, K. M., L. Van Neste, L. Cope, J. E. Ohm, J. G. Herman, W. Van Criekinge, K. E. Schuebel, and S. B. Baylin. 2008. Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res. 68, 5753-5759   DOI   ScienceOn
22 Metsuyanim, S., N. Pode-Shakked, K. M. Schmidt-Ott, G. Keshet, G. Rechavi, D. Blumental, and B. Dekel. 2008. Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes. Stem Cells 26, 1808-1817   DOI   ScienceOn
23 Molofsky, A. V., R. Pardal, T. Iwashita, I. K. Park, M. F. Clarke, and S. J. Morrison. 2003. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962-967   DOI   ScienceOn
24 Momparler, R. L. 2003. Cancer epigenetics. Oncogene 22, 6479-6483   DOI   ScienceOn
25 Nam, J. S., Y. Ino, Y. Kanai, M. Sakamoto, and S. Hirohashi. 2004. 5-aza-2'-deoxycytidine restores the E-cadherin system in E-cadherin-silenced cancer cells and reduces cancer metastasis. Clin. Exp. Metastasis 21, 49-56   DOI   ScienceOn
26 Chambers, I. and S. R. Tomlinson. 2009. The transcriptional foundation of pluripotency. Development 136, 2311-2322   DOI   ScienceOn
27 Jones, P. A. and S. B. Baylin. 2007. The epigenomics of cancer. Cell 128, 683-692   DOI   ScienceOn
28 Mathews, L. A., F. Crea, and W. L. Farrar. 2009. Epigenetic gene regulation in stem cells and correlation to cancer. Differentiation 78, 1-17   DOI   ScienceOn
29 McGarvey, K. M., E. Greene, J. A. Fahrner, T. Jenuwein, and S. B. Baylin. 2007. DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res. 67, 5097-5102   DOI   ScienceOn
30 Cowling, V. H., C. M. D'Cruz, L. A. Chodosh, and M. D. Cole. 2007. c-Myc transforms human mammary epithelial cells through repression of the Wnt inhibitors DKK1 and SFRP1. Mol. Cell Biol. 27, 5135-5146   DOI   ScienceOn