• Title/Summary/Keyword: Callus Induction

Search Result 392, Processing Time 0.028 seconds

Callus Induction and Increase in Anti-Inflammatory Activity by Treatment of Methyl Jasmonate in Adenium obesum (석화의 캘러스 유도 및 메틸 자스모네이트 처리에 의한 항염증 활성 증진)

  • Lee, Da Young;Min, Jin Woo;Joo, Gwang Sik;Kang, Hee Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • Background: Callus cultivation has the advantage of producing a large amount of tissue of a plant in a laboratory regardless of the environment, for extracting an active substance. In the present study, callus formation was induced in the leaves of the succulent plant Adenium obesum (Forssk.) Roem & Schult. After callus cultivation, anti-inflammatory activity tests were conducted, because leaves and stems of A. obesum have been reported to possess biological activity. Methods and Results: In order to induce callus formation, various concentrations of plant growth factors, such as kinetin, naphtha-leneacetic acid (NAA), 6-benzyladenine (BA), and indole-3-acetic acid (IAA) were added to MS solid medium. The maximum callus proliferation was induced by mixed medium consisting of NAA ($2mg/{\ell}$) and BA ($1mg/{\ell}$). In addition, an elicitor was added to the medium under optimal conditions for initiating suspension culture. After suspension culturing, the activities of the callus extracts were compared and analyzed. The cytotoxicity and anti-inflammatory activity tests revealed that the anti-inflammatory activity of the callus extract and the content of phenolic compounds were elevated after treatment of the callus culture with the elicitior. Conclusions: A. obesum callus might be considered as potential source of biologically active anti-inflammatory material.

Proliferation, Accumulation of Polyphenols, and Antioxidant Activities of Callus from the 'Anji Baicha' Cultivar of Tea [Camellia sinensis (L.) O. Ktze.]

  • Liu, Mingfei;Wang, Junli;Tian, Birui;Huang, Jingjing;Zhang, Rongrong;Lin, Yuxing;Xiao, Zefeng
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.252-264
    • /
    • 2017
  • Tea is one of the most consumed beverages worldwide and the relatively high levels polyphenols is benefit for health. In this study, we developed an efficient system for proliferation of callus from 'Anji Baicha', a cultivar of tea (Camellia sinensis). Callus tissue was initially induced by culturing leaf explants on medium containing different plant growth regulators. For callus induction, thidiazuron (TDZ) was more effective than 2,4-dichlorophenoxyacetic acid (2,4-D), ${\alpha}-naphthalene$ acetic acid (NAA), and $N^6-benzyladenine$ (BA). The frequency of callus induction from leaf explants reached 90.21% on $1.0mg{\cdot}L^{-1}$ TDZ and the developed callus was reddish and friable. We also tested the effect of different concentrations of NAA, 2,4-D, indole 3-acetic acid (IAA), BA, and TDZ, alone and in combinations, on callus proliferation. Medium supplemented with TDZ in combination with IAA was suitable for callus proliferation and accumulation of tea polyphenols. The growth index value and tea polyphenol content of callus cultured on MS medium containing $0.5mg{\cdot}L^{-1}$ TDZ and $1.0mg{\cdot}L^{-1}$ IAA was maximally 1,351% and 23.24%, respectively, and the relative abundance of epicatechin was as high as 17.449%. We also measured the antioxidant activity of all samples and the callus with the highest tea polyphenol content also exhibited high potential radical scavenging activity.

Regeneration of Tobacco Tissue Introduced with the Maize Transposable Element Activator (옥수수 전이인자 Ac가 도입된 연초조직의 재분화)

  • 박성원;최광태;박지창;김영진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 1991
  • To explore the possibility of introducing Zea mays transposable element Ac(activator) which can be used as a mutagen and gene tag in tobacco plants other than maitre, we tried to introduce a cloned Ac element into tobacco cells by an Agrobacterium tumefaciens binary vector system. Transformation of N. babacum cv. Burley 21 tissues and regeneration to whole plant were carried out. The frequency of the transformed callus induced in shoot induction media was higher than that of transformed callus induced in callus induction media. However, the calli were not grown in the second selection media, and became yellow senescent calli. Regenerated tobacco plantlets with foreign gene were also obtained in shoot induction media containing 100 $\mu\textrm{g}$/ml kanamycin and 100$\mu\textrm{g}$/ml carbenicillin. The leaf tissues of transformant was also resistant to 1000 $\mu\textrm{g}$/ml kanamycin. The chromosomal DNAs of transformant and normal plant of N. tabacum were digested by EcoR I and Hind III but not by Pst I.

  • PDF

Effects of Plant Growth Regulators on in vitro Propagation of Cymbidium kanran and Cymbidium hybrida (한란 및 심비디움의 기내 증식에 미치는 생장조절물질의 효과)

  • Kim, Hak-Yoon;Kwon, Soom-Tae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.18
    • /
    • pp.1-7
    • /
    • 2000
  • This study was carried out to determine the effects of plant growth regulators on organogenesis from Cymbidium kanran and Cymbidium hybrida. Optimal rhizome formation from Cymbidium kanran was obtained on MS medium with 10 ppm kinetin+2 ppm NAA. and optimal protocorm formation from Cymbidium hybrida was obtained on MS medium with 10 ppm kinetin+0.05 ppm NAA. However, in this study the optimal media for the callus induction from both explants was not identified. Optimal shoot induction from rhizome of Cymbidium kanran was obtained on MS medium with 10 ppm BA+2 ppm NAA and 5 ppm BA+2 ppm NAA. Optimal shoot induction from protocorm of Cymbidium hybrida was obtained on MS medium with 10 ppm kinetin+2 ppm NAA.

  • PDF

Efficient Plantlet Regeneration via Callus Formation from Leaf Segment of Lilium Oriental Hybrid 'Casa Blanca'

  • Kim Mi-Sun;Jeon Jae-Heung;Youm Jung-Won;Kim Jae-Hyun;Lee Byung-Chan;Kang Won-Jin;Kim Hyun-Soon;Joung Hyouk
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.129-134
    • /
    • 2005
  • Callus induction from a leaf explant has been achieved in Lilium Oriental hybrid 'Casa Blanca'. The highest frequency of callus induction was obtained on MS medium supplemented with 0.5 mg/L BA and 2.0 mg/L NAA after 2 months of culture. The cultures maintained continuously without change in color and type of callus when they cultured in the dark. Plantlet regeneration with a high frequency was achieved from induced calli on the same medium. A number of shoots are formed from one cluster of callus, and bulblets developed into intact plantlets after transfer to hormone-free MS medium. No phenotypic variations were observed among regenerants. Enhancement in plantlet regeneration via callus formation would be expected to facilitate the efficiency of transformation of this Oriental hybrid 'Casa Blanca'.

Plant regeneration from callus derived root of northen type in garlic (Allium sativum L.) (한지형 마늘에 있어서 기내뿌리로부터 식물체 재분화)

  • Ahn, Yul-Kyun;Kim, Do-Sun;Yoon, Moon-Kyoung
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.403-406
    • /
    • 2009
  • This study was conducted to develop an effective production of callus induction and plant regeneration system for garlic transformation. The best callus production occurred on in vitro root segment initially cultured on MS medium with 1.0 mg/L 2,4-D and 0.2 mg/L IAA in both ‘Danyang' and ‘Euseong'. The frequency of callus formation were 81.2% ‘Danyang' and 76.1% ‘Euseong'. Eight weeks after callus induction, callus lines were transferred to regeneration medium during 7 weeks. The best shoot regeneration medium was MS supplemented with 5 mg/L Kinetin and 1 mg/L NAA for ‘Danyang' and MS supplemented with 10 mg/L BAP for ‘Euseong'. The frequency of shoot regeneration were 51.5% ‘Danyang' and 56.6% ‘Euseong' The plantlets were acclimatized and transferred to the greenhouse with almost survival. This in vitro regeneration system should be useful for garlic transformation.

Changes of Protein and Lipid During Callus Induction and Plant Regeneration from Perilla frutescens (들깨 조직으로부터 callus 유기에 따른 지질 및 단백질 조성의 변화)

  • 김현경;김도훈;정순재;남재성;정대수
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.254-258
    • /
    • 2001
  • The biochemical change during regeneration of perilla callus were investigated by comparing total protein and lipid contents, protein band pattern in SDS-PAGE, and fatty acid composition in the calli cultured for various period(0, 1, 3, 5 and 6 weeks) Calli were induced from cotyledon and hypocotyl explants of peplants of perilla on perilla on MS medium containing BA(0.5 mg/L) and NAA(0.5mg/L). The protein contents reached the peak at 3 weeks after induction of calli, and then was decreased. Total lipid contents was decreased as the culture period increased. The band pattern of polypeptides showed that 30KD and 45KD polypeptides and 22KD and 45KD polypetides were major proteins in the cotyledon and hypocotyl explants, respectively. However increase of culture period only 30KD protein was highly accumulated.

  • PDF

Sequential Induction of Ethylene, Lipoxygenase, and Ascorbate Peroxidase in Senescing Soybean Callus

  • Ha, Mi-Young;Kim, Do-Kyun;Kim, Soon-Young;Kang, Bin-G.;Oh, Seung-Eun
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.564-568
    • /
    • 1996
  • Bursts of ethylene production occurred in twice at an early exponential (EEP) and prestationary (PSP) phases, respectively, during growth of callus tissue isolated from the root of soybean seedlings. The second burst of ethylene production at PSP was smaller in magnitude than the earlier one at EEP, but was followed by increases in both guaiacol peroxidase (GuPOX) and ascorbate peroxidase (AsPOX). The increase in AsPOX activity was also preceded by an increase in lipoxygenase (LOX) activity. Treatment of the tissue with the ethylene antagonist 2,5-norbonadiene (NBD) resulted in substantial reduction in LOX and AsPOX activities during this period. GuPOX activity was reduced only slightly, if any, by NBD. Role of ethylene in the sequential induction of LOX and AsPOX in senescing callus tissue is discussed.

  • PDF

Effects of Plant Growth Regulators on Callus Formation and Organogenesis of Sicyos angulatus L. (야생식물 안동오이의 기내배양시 캘러스형성과 기관분화에 미치는 생장조절제의 영향)

  • 권순태
    • Korean Journal of Plant Resources
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 1998
  • This study was carried out to determine the effects of plant growth regulators on cell culture and organogenesis from Sicyos angulatus L. using explants of leaves, stems and cotyledons. Optimal callus induction for S. angulatus was obtained on MS medium with 0.1mg/$\ell$ BA and 2.0mg/$\ell$ 2,4 -D from cotyledons, 0.1mg/$\ell$ BA and 5.0mg/$\ell$ NAA from leaves explants, Optimal media for subculture and growth of S. angulatus callus were 1/2 MS medium with 0.1mg/$\ell$ BA and 1.0mg/$\ell$ 2,4 -D for solid culture, and 0.1mg/$\ell$ 2,4-D for suspension culture. Many adventitious roots with some shoots were formed were formed from leaf and cotyledon explants of S. angulatus during callus induction with optimal combinations of plants growth regulators.

  • PDF

Silver nitrate and silver-thiosulphate mitigates callus and leaf abscission during Shisham clonal micro-propagation

  • Raturi, Manoj Kumar;Thakur, Ajay
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.173-178
    • /
    • 2021
  • Basal callus formation and leaf abscission is a problem in clonal micropropagation. We have described an in vitro clonal propagation protocol of Dalbergia sissoo Roxb (shisham) 'FRI-14' in which AgNO3 played important role not only in mitigating problem of leaf abscission and basal callus, but also improved shoot induction and multiplication. Best induction and shoot multiplication was obtained on MS media with 1.5 mg/l 6-BAP and 10 mg/l AgNO3 and half-strength MS media with 0.5 mg/l 6-BAP, 2 mg/l AgNO3 and 50 mg/l Adenine sulphate whereas best ex vitro rooting was obtained with 200 mg/l IBA in pulse treatment.