• Title/Summary/Keyword: Calibration verification

Search Result 277, Processing Time 0.03 seconds

Evaluation of Clinical Risk according to Multi-Leaf Collimator Positioning Error in Spinal Radiosurgery (척추 방사선수술 시 다엽콜리메이터 위치 오차의 임상적 위험성 평가)

  • Dong‑Jin Kang;Geon Oh;Young‑Joo Shin;Jin-Kyu Kang;Jae-Yong Jung;Boram Lee
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.527-533
    • /
    • 2023
  • The purpose of this study is to evaluate the clinical risk of spinal radiosurgery by calculating the dose difference due to dose calculation algorithm and multi-leaf collimator positioning error. The images acquired by the CT simulator were recalculated by correcting the multi-leaf collimator position in the dose verification program created using MATLAB and applying stoichiometric calibration and Monte Carlo algorithm. With multi-leaf collimator positioning error, the clinical target volume (CTV) showed a dose difference of up to 13% in the dose delivered to the 95% volume, while the gross tumor volume (GTV) showed a dose difference of 9%. The average dose delivered to the total volume showed dose variation from -8.9% to 9% and -10.1% to 10.2% for GTV and CTV, respectively. The maximum dose delivered to the total volume of the spinal cord showed a dose difference from -14.2% to 19.6%, and the dose delivered to the 0.35 ㎤ volume showed a dose difference from -15.5% to 19.4%. In future research, automating the linkage between treatment planning systems and dose verification programs would be useful for spinal radiosurgery.

One-stop Platform for Verification of ICT-based environmental monitoring sensor data (ICT 기반 환경모니터링 센서 데이터 검증을 위한 원스탑 플랫폼)

  • Chae, Minah;Cho, Jae Hyuk
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • Existing environmental measuring devices mainly focus on electromagnetic wave and eco-friendly product certification and durability test, and sensor reliability verification and verification of measurement data are conducted mainly through sensor performance evaluation through type approval and registration, acceptance test, initial calibration, and periodic test. This platform has established an ICT-based environmental monitoring sensor reliability verification system that supports not only performance evaluation for each target sensor, but also a verification system for sensor data reliability. A sensor board to collect sensor data for environmental information was produced, and a sensor and data reliability evaluation and verification service system was standardized. In addition, to evaluate and verify the reliability of sensor data based on ICT, a sensor data platform monitoring prototype using LoRa communication was produced, and the test was conducted in smart cities. To analyze the data received through the system, an optimization algorithm was developed using machine learning. Through this, a sensor big data analysis system is established for reliability verification, and the foundation for an integrated evaluation and verification system is provide.

Verification of GEO-KOMPSAT-2A AMI Radiometric Calibration Parameters Using an Evaluation Tool (분석툴을 이용한 천리안2A 기상탑재체 복사 보정 파라미터 검증)

  • Jin, Kyoungwook;Park, Jin-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1323-1337
    • /
    • 2020
  • GEO-KOMPSAT-2A AMI (Advanced Meteorological Imager) radiometric calibration evaluation is an essential element not only for functional and performance verification of the payload but for the quality of the sensor data. AMI instrument consists of six reflective channels and ten thermal infrared ones. One of the key parameters representing radiometric properties of the sensor is a SNR (Signal-to-Noise Ratio) for the reflective channels and a NEdT (Noise Equivalent delta Temperature) for the IR ones respectively. Other important radiometric calibration parameters are a dynamic range and a gain value related with the responsivity of detectors. To verify major radiometric calibration performance of AMI, an offline radiometric evaluation tool was developed separately with a real-time AMI data processing system. Using the evaluation tool, validation activities were carried out during the GEO-KOMPSAT-2A In-Orbit Test period. The results from the evaluation tool were cross checked with those of the HARRIS, which is the AMI payload vendor. AMI radiometric evaluation activities were conducted through three phases for both sides (Side 1 and Side 2) of AMI payload. Results showed that performances of the key radiometric properties were outstanding with respect to the radiometric requirements of the payload. The effectiveness of the evaluation tool was verified as well.

Multi-camera Calibration Method for Optical Motion Capture System (광학식 모션캡처를 위한 다중 카메라 보정 방법)

  • Shin, Ki-Young;Mun, Joung-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.41-49
    • /
    • 2009
  • In this paper, the multi-camera calibration algorithm for optical motion capture system is proposed. This algorithm performs 1st camera calibration using DLT(Direct linear transformation} method and 3-axis calibration frame with 7 optical markers. And 2nd calibration is performed by waving with a wand of known length(so called wand dance} throughout desired calibration volume. In the 1st camera calibration, it is obtained not only camera parameter but also radial lens distortion parameters. These parameters are used initial solution for optimization in the 2nd camera calibration. In the 2nd camera calibration, the optimization is performed. The objective function is to minimize the difference of distance between real markers and reconstructed markers. For verification of the proposed algorithm, re-projection errors are calculated and the distance among markers in the 3-axis frame and in the wand calculated. And then it compares the proposed algorithm with commercial motion capture system. In the 3D reconstruction error of 3-axis frame, average error presents 1.7042mm(commercial system) and 0.8765mm(proposed algorithm). Average error reduces to 51.4 percent in commercial system. In the distance between markers in the wand, the average error shows 1.8897mm in the commercial system and 2.0183mm in the proposed algorithm.

Establishment of Test Field for Aerial Camera Calibration (항공 카메라 검정을 위한 테스트 필드 구축방안)

  • Lee, Jae-One;Yoon, Jong-Seong;Sin, Jin-Soo;Yun, Bu-Yeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • Recently, one of the most outstanding technological characteristics of aerial survey is an application of Direct Georeferencing, which is based on the integration of main sensing sensors such as aerial camera or Lidar with positioning sensors GPS and IMU. In addition, a variety of digital aerial mapping cameras is developed and supplied with the verification of their technical superiority and applicability. In accordance with this requirement, the development of a multi-looking aerial photographing system is just making 3-D information acquisition and texture mapping possible for the dead areas arising from building side and high terrain variation where the use of traditional phptogrammetry is not valid. However, the development of a multi-looking camera integrating different sensors and multi-camera array causes some problems to conduct time synchronization among sensors and their geometric and radiometric calibration. The establishment of a test field for aerial sensor calibration is absolutely necessary to solve this problem. Therefore, this paper describes investigations for photogrammetric Test Field of foreign countries and suggest an establishment scheme for domestic test field.

  • PDF

Studies on the Development of Storage Tank Model for both Long and Short Terms Runoff (II) (장단기유출 양용저유 탱크 모델의 개발에 관한 연구 (II))

  • 이순혁;박명근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.51-60
    • /
    • 1991
  • The main objective of this study is to examine the adaptability for the large watershed of the storage tank model which can be applied for the analysis of both long and short terms runoff developed on the basis of hydrologic data for a smaH mountaineous watershed. The results obtained in this study are summarized as follows ; 1. Areal rainfalls of the Dae Chong watershed were calculated by Thiessen method composed of 9 Thiessen networks. 2. Optimal parameters for two types, Model A and Model B of tank models were derived through calibration procedure by standardized Powell method. 3. Monthly simulated flows of Model B are seemed to be closer to the monthly observed than those of Model A during calibration period in the long terms runoff. 4. Relative errors for the simulated flood flows of Model B were apperaed as lower percentage to the observed than those of Model A during calibration period in the short terms runoff. 5. Daily simulated hydrographs of Model B are seemed to be closer to the daily observed than those of Model A during verification period in the long terms runoff. Significance of Model B was highly acknowledged in comparison with Model A in the correlation analysis between annual observed and annual simulated runoff. 6. Reproducibility of simulated flows for Model B is generally seemed to be better than that of Model A during calibration period in the short terms runoff. 7. It can be concluded that reproducibility of Model B is superior to that of Model A in the long and short terms runoff even a large watershed like the result of the small one. 8. It was verified that adaptability for the large watershed of Model B is superior to that of Model A between the two models which were developed by a small watershed characteristics for both long and short terms runoff. 9. Further study for getting a suitable tank model is desirable to be established by the decision, calibration method of initial parameters of tank model and by additional application of another watershed with different watersheds and meterological characteristics.

  • PDF

Development of a Vision-based Position Estimation System for the Inspection and Maintenance Manipulator of Steam Generator Tubes a in Nuclear Power Plant

  • Jeong, Kyung-Min;Cho, Jae-Wan;Kim, Seung-Ho;Kim, Seung-Ho;Jung, Seung-Ho;Shin, Ho-Chul;Choi, Chang-Whan;Seo, Yong-Chil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.772-777
    • /
    • 2003
  • A vision-based tool position estimation system for the inspection and maintenance manipulator working inside the steam generator bowl of nuclear power plants can help human operators ensure that the inspection probe or plug are inserted to the targeted tube. Some previous research proposed a simplified tube position verification system that counts the tubes passed through during the motion and displays only the position of the tool. In this paper, by using a general camera calibration approach, tool orientation is also estimated. In order to reduce the computation time and avoid the parameter bias problem in an ellipse fitting, a small number of edge points are collected around the large section of the ellipse boundary. Experiment results show that the camera calibration parameters, detected ellipses, and estimated tool position are appropriate.

  • PDF

Calibration of Frequency Response for a Sampling Oscilloscope (샘플링 오실로스코프의 주파수 응답특성 교정)

  • Cho, Chihyun;Lee, Dong-Joon;Lee, Joo-Gwang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.344-352
    • /
    • 2018
  • We herein propose a calibration method for a sampling oscilloscope. The proposed method can correct the systematic errors in the oscilloscope such as time-based distortion and impedance mismatch. In addition, it can accurately estimate the residual jitter that remains after a time-based correction and the scale factor that varies in accordance with the setting of the pulse generator. The proposed method is validated thorough the comparison and verification with the power meter, and the uncertainty of the measurement method is analyzed.

Development of 1-Dimensional Water Quality Model Automatizing Calibration-Correction and Application in Nakdong River (1차원 수질 예측 모형의 검보정 자동화 시스템 개발 및 낙동강에서의 적용)

  • Son, Ah Long;Han, Kun Yeun;Park, Kyung Ok;Kim, Byung Hyun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.765-777
    • /
    • 2011
  • According to the total pollution load management system, exact prediction and analysis of water quality and discharge has been required in order to allocate the amount of pollution load to each local government. In this study, QUAL2E model was used for comparison with other water quality models and improve the inadequate to forecast future water quality. And Various calibration and verification methods were applied to deal with existing uncertainties of parameter during modeling water quality. For user convenience, A GUI(Graphical User Interface) system named "QL2-XP" model is developed by object-oriented language for the user convenience and practical usage. Suggested GUI system consist of hydraulic analysis, water quality analysis, optimized model calibration processes, and postprocessing the simulation results. Therefore this model will be effectively utilized to manage practical and efficient water quality.

Independent PRF Generation and Control for Frequency Phase Calibration on Mono-pulse Radar at a Remote Location (원격지에서 모노펄스 레이더의 주파수 위상 교정을 위한 독립된 펄스반복주파수 생성 및 제어)

  • Yang, Jaewon;Yoo, Seungoh;Yoon, Jaehyuk;Lee, Dongju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.368-373
    • /
    • 2021
  • This paper presents a method of independent pulse repetition frequency(PRF) generation and control for frequency phase calibration on mono-pulse radar at a remote location. In order to generate an independent PRF signal of 320[Hz], pulse width modulation(PWM) of 16-bit timer/counter was applied. For a precision control of PRF signal, 16-bit timer/counter interrupt was changed for each period. Therefore, average frequency of PRF could be controlled by 0.0001[Hz]. To calibrate a frequency phase of mono-pulse radar at a remote location, the proposed PRF generator with a precision control of frequency was used regardless of receiving PRF signal from a radar. For the verification of the proposed PRF generator, theoretical analysis and experimental results are included.