• Title/Summary/Keyword: Calibration Uncertainties

Search Result 116, Processing Time 0.026 seconds

Performance Analysis of Array Processing Techniques for GNSS Receivers under Array Uncertainties

  • Lee, Sangwoo;Heo, Moon-Beom;Sin, Cheonsig;Kim, Sunwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • In this study, the effect of the steering vector model mismatch due to array uncertainties on the performance of array processing was analyzed through simulation, along with the alleviation of the model mismatch effect depending on array calibration. To increase the reliability of the simulation results, the actual steering vector of the array antenna obtained by electromagnetic simulation was used along with the Jahn's channel model, which is an experimental channel model. Based on the analysis of the power spectrum for each direction, beam pattern, and the signal-to-interference-plus-noise ratio of the beamformer output, the performance deterioration of array processing due to array uncertainties was examined, and the performance improvement of array processing through array calibration was also examined.

Uncertainties in Pressure Calibration of Laboratory Standard Microphones by Reciprocity Technique (가역방법에 의한 표준 마이크로폰 음압교정의 불확도)

  • 서상준;권휴상;이용봉;서재갑
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.90-102
    • /
    • 2004
  • According to the Mutual Recognition Arrangement (MRA), the calibration and/or test laboratories should satisfy the management and technical requirements ISO 17025 or equivalent. Chapter 5, Section 5.10.4 of the technical requirement of ISO 17025 suggests the required informations for calibration certificates, one of them is to state the uncertainty of measurement. The uncertainties of measurement in reciprocity calibration of standard laboratory microphone were calculated. The expanded uncertainties for 1 and 1/2 inch microphones were 0.03 dB in the middle frequency range and they increased up to 0.10 dB and 0.11 dB at 20 Hz, 0.07 dB and 0.08 dB at high frequency, respectively.

Preliminary Analysis of Data Quality and Cloud Statistics from Ka-Band Cloud Radar (Ka-밴드 구름레이더 자료품질 및 구름통계 기초연구)

  • Ye, Bo-Young;Lee, GyuWon;Kwon, Soohyun;Lee, Ho-Woo;Ha, Jong-Chul;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • The Ka-band cloud radar (KCR) has been operated by the National Institute of Meteorological Research (NIMR) of Korea Meteorological Administration (KMA) at Boseong National Center for Intensive Observation of severe weather since 2013. Evaluation of data quality is an essential process to further analyze cloud information. In this study, we estimate the measurement error and the sampling uncertainty to evaluate data quality. By using vertically pointing data, the statistical uncertainty is obtained by calculating the standard deviation of each radar parameter. The statistical uncertainties decrease as functions of sampling number. The statistical uncertainties of horizontal and vertical reflectivities are identical (0.28 dB). On the other hand, the statistical uncertainties of Doppler velocity (spectrum width) are 2.2 times (1.6 times) larger at the vertical channel. The reflectivity calibration of KCR is also performed using X-band vertically pointing radar (VertiX) and 2-dimensional video disdrometer (2DVD). Since the monitoring of calibration values is useful to evaluate radar condition, the variation of calibration is monitored for five rain events. The average of calibration bias is 10.77 dBZ and standard deviation is 3.69 dB. Finally, the statistical characteristics of cloud properties have been investigated during two months in autumn using calibrated reflectivity. The percentage of clouds is about 26% and 16% on September to October. However, further analyses are required to derive general characteristics of autumn cloud in Korea.

Calibration uncertainty of a spinning rotor gauge (스피닝 로터 게이지 교정 불확도)

  • 홍승수;임인태;신용현;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2003
  • Spinning Rotor Gauge (SRG) has been used to transfer standard gauge for international comparison at the high vacuum standards. We calibrated a spinning rotor gauge by using dynamic calibration system (DCS) that was a national high vacuum standards system. And its uncertainties were evaluated with the International Organization for Standardization (ISO), they were recognized ai A type uncertainty, B type uncertainty, combined Standard uncertainty, and expanded uncertainty. The combined standard uncertainties were $1.8007\times10^{-5}$ Pa ~ ~$4.8422\times10^{-5}$ Pa for this spinning rotor gauge.

Pushing precision and accuracy of RR Lyrae variables as distance indicators

  • Bhardwaj, Anupam;Yang, Soung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.80.3-81
    • /
    • 2021
  • RR Lyrae variables are excellent distance indicators thanks to their visual magnitude-metallicity relation and well-defined Period-Luminosity Relations (PLRs) at infrared wavelengths. These population II variables together with the tip of the red giant branch provide primary calibration for the first-rung of the population II distance ladder. We will present new empirical calibration of RR Lyrae PLRs at near-infrared wavelengths using our data from the ongoing CFHT-WIRCam RR Lyrae program. We will discuss the systematic uncertainties involved in the calibration of these relations based on the latest Gaia EDR3 parallaxes and the implication for the cosmic distance scale.

  • PDF

Calibration of Mobile Robot with Single Wheel Powered Caster (단일 바퀴 구동 캐스터 기반 모바일 로봇의 캘리브레이션)

  • Kim, Hyoung Cheol;Park, Suhan;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 2022
  • Accurate kinematic parameters of mobile robots are essential because inaccurate kinematic model produces considerable uncertainties on its odometry and control. Especially, kinematic parameters of caster type mobile robots are important due to their complex kinematic model. Despite the importance of accurate kinematic parameters for caster type mobile robots, few research dealt with the calibration of the kinematic model. Previous study proposed a calibration method that can only calibrate double-wheeled caster type mobile robot and requires direct-measuring of robot center point and distance between casters. This paper proposes a calibration method based on geometric approach that can calibrate single-wheeled caster type mobile robot with two or more casters, does not require direct-measuring, and can successfully acquire all kinematic parameters required for control and odometry. Simulation and hardware experiments conducted in this paper validates the proposed calibration method and shows its performance.

THERMAL MODELS AND FAR INFRARED EMISSION OF ASTEROIDS

  • KIM SAM;LEE HYUNG MOK;NAKAGAWA TAKAO;HASEGAWA SUNAO
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.21-31
    • /
    • 2003
  • ASTRO-F /FIS will carry out all sky survey in the wavelength from 50 to 200 ${\mu}m$. At far infrared, stars and galaxies may not be good calibration sources because the IR fluxes could be sensitive to the dust shell of stars and star formation activities of galaxies. On the other hand, asteroids could be good calibration sources at far infrared because of rather simple spectral energy distribution. Recent progresses in thermal models for asteroids enable us to calculate the far infrared flux fairly accurately. We have derived the Bond albedos and diameters for 559 asteroids based on the IRAS and ground based optical data. Using these thermal parameters and standard thermal model, we have calculated the spectral energy distributions of asteroids from 10 to 200 ${\mu}m$. We have found that more than $70\%$ of our sample asteroids have flux errors less than $10\%$ within the context of the best fitting thermal models. In order to assess flux uncertainties due to model parameters, we have computed SEDs by varing external parameters such as emissivity, beaming parameter and phase integral. We have found that about 100 asteroids can be modeled to be better than $5.8\%$ of flux uncertainties. The systematic effects due to uncertainties in phase integral are not so important.

IMPLEMENTATION OF DATA ASSIMILATION METHODOLOGY FOR PHYSICAL MODEL UNCERTAINTY EVALUATION USING POST-CHF EXPERIMENTAL DATA

  • Heo, Jaeseok;Lee, Seung-Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.619-632
    • /
    • 2014
  • The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.

Uncertainty Analysis in Potential Transformer Calibration Using a High Voltage Capacitance Bridge

  • Jung, Jae-Kap;Lee, Sang-Hwa;Kang, Jeon-Hong;Kwon, Sung-Won;Kim, Myung-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.401-407
    • /
    • 2007
  • Precise absolute measurement of the errors in a potential transformer (PT) can be achieved using high voltage capacitance bridge (HVCB) and capacitive divider. The uncertainty in a PT measurement using the HVCB system was evaluated by considering the overall factors affecting during the calibration of a PT. The expanded uncertainties are found to be not more than $30{\times}10^{-6}$ for ratio and $30{\mu}rad$ for phase up to the primary voltage of $V_p=22kV$. For same PTs, the measured errors in KRISS (Korea Research Institute of Standards and Science) using our bridge are well coincide with those in NMIA (National Measurement Institute of Australia) and PTB (Physikalisch-Technische Bundesanstalt) within the corresponding uncertainties.

Review and Suggestions of Models for Measurement System Analysis (측정 시스템 분석 모형의 고찰 및 새로운 모형의 제안)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.191-195
    • /
    • 2008
  • The present study contributes reviewing and suggesting various models for measurement system analysis (MSA). Measurement errors consist of accuracy, linearity, stability, part precision, repeatability and reproducibility (R&R). First, the major content presents split-plot design, and the combination method of crossed and nested design for obtaining gage R&R. Second, we propose $\bar{x}-s$ variable control chart for calculating the gage R&R and number of distinct category. Lastly, investigating the determination of gage performance curve which establishes the control specification propagating calibration uncertainties and measurement errors is described.