• Title/Summary/Keyword: Cable Impedance

Search Result 132, Processing Time 0.026 seconds

A Digital Distance Relaying Algorithm in Combined Transmission Line Connected whth Overhead Line and Underground Cable (가공송전선로와 지중송전선로가 연계된 혼합송전선로에서 디지털 거리계전 알고리즘)

  • Ha, Che-Wung;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.440-442
    • /
    • 2000
  • This paper describes the digital distance algorithm in case of combined transmission line connected with overhead line and underground cable. Actually as fault is occurred in cable, it results in the complicated phenomena due to the several kind of grounding method in the sheath of cable. Accordingly the impedance. Therefore the correct impedance calculation algorithm is requested in combined transmission line to avoid the wrong trip of relay. This paper presents the development result of impedance calculation algorithm In such transmission line.

  • PDF

A Study on Permissible Current of Low Impedance Cable (저임피던스 케이블의 허용전류에 대한 연구)

  • 김동식;박복기;이종찬;이관우;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.513-515
    • /
    • 1999
  • In this study, we evaluated the relation of the test and theory of low impedance cable As the result We could obtained the result in accordance the test with theory in 85 ~ 95% tolerance . Test method measured the relation of the current and temperature of cable jacket in using CT to put in 3 phase AC current simultationiously. The current and temperature of it was calculated in according to JCS- l68D

  • PDF

Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.489-504
    • /
    • 2012
  • For the safety of prestressed structures such as cable-stayed bridges and prestressed concrete bridges, it is very important to ensure the prestress force of cable or tendon. The loss of prestress force could significantly reduce load carrying capacity of the structure and even result in structural collapse. The objective of this study is to present a smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection. Firstly, a smart PZT-interface is newly designed for sensitively monitoring of electro-mechanical impedance changes in tendon-anchorage subsystem. To analyze the effect of prestress force, an analytical model of tendon-anchorage is described regarding to the relationship between prestress force and structural parameters of the anchorage contact region. Based on the analytical model, an impedance-based method for monitoring of prestress-loss is conducted using the impedance-sensitive PZT-interface. Secondly, wireless impedance sensor node working on Imote2 platforms, which is interacted with the smart PZT-interface, is outlined. Finally, experiment on a lab-scale tendon-anchorage of a prestressed concrete girder is conducted to evaluate the performance of the smart PZT-interface along with the wireless impedance sensor node on prestress-loss detection. Frequency shift and cross correlation deviation of impedance signature are utilized to estimate impedance variation due to prestress-loss.

An Improvement of Digital Distance Relaying Algorithm on Underground Transmission Cables (지중송전케이블룡 디지털 거리계전 알고리즘 개선)

  • Ha, Che-Ung;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.595-601
    • /
    • 2000
  • This paper describes the improvement method of distance relaying algorithm for the underground transmission cables. Distance relaying algorithms have been mainly developing to protect the overhead transmission lines than the underground cables. If the cable systems are directly protected using distance relaying algorithm developed for overhead line without any improvement, there will be really occurred many misoperation in cable systems, because the cable systems consist of the conductor, the sheath, several grounding method, cable cover protection units(CCPUs), and grounding wire. Accordingly, the complicated phenomena are occurred, if there is a fault in cable systems. Therefore, to develope a correct distance relaying algorithm, such cable characteristics should be taken into account. This paper presents the process to improve distance relaying algorithm which is now used. REal cable system was selected to establish modeling in EMTP and ATP Draw. It was discovered through the detailed simulation during the fault that the large error existed between impedance measured at the relay point and real impedance is due to the resistance of grounding wire in each grounding method. And also compensation factor obtained by the simulation is proposed in this paper. It is proved that the factor proposed can fairly improve the accuracy of impedance at the relay point. It is evaluated that the protective ability will be really much improved, if the algorithm proposed in this paper is applied for cable systems of utility.

  • PDF

Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge

  • Ho, Duc-Duy;Lee, Po-Young;Nguyen, Khac-Duy;Hong, Dong-Soo;Lee, So-Young;Kim, Jeong-Tae;Shin, Sung-Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.145-164
    • /
    • 2012
  • In this paper, solar-powered, multi-scale, vibration-impedance sensor node on Imote2 platform is presented for hybrid structural health monitoring (SHM) in cable-stayed bridge. In order to achieve the objective, the following approaches are proposed. Firstly, vibration- and impedance-based hybrid SHM methods are briefly described. Secondly, the multi-scale vibration and impedance sensor node on Imote2-platform is presented on the design of hardware components and embedded software for vibration- and impedance-based SHM. In this approach, a solar-powered energy harvesting is implemented for autonomous operation of the smart sensor nodes. Finally, the feasibility and practicality of the smart sensor-based SHM system is evaluated on a full-scale cable-stayed bridge, Hwamyung Bridge in Korea. Successful level of wireless communication and solar-power supply for smart sensor nodes are verified. Also, vibration and impedance responses measured from the target bridge which experiences various weather conditions are examined for the robust long-term monitoring capability of the smart sensor system.

Fault current characteristic analysis of HTS power cable (고온 초전도 전력 케이블의 고장전류 특성 해석)

  • Kim, Jin-Geun;Lee, Jea-Deuk;Kim, Jea-Ho;Kim, A-Rong;Cho, Jeon-Wook;Sim, Ki-Deok;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.629-630
    • /
    • 2008
  • Before applying the HTS power cable to the real utility, the system needs to be analyzed using certain simulation tools. The impedance of superconductor is changed due to the magnitude of current, temperature, and magnetic field. PSCAD/EMTDC does not provide the superconductor component which has the impedance characteristic. The authors have developed the HTS power cable component in EMTDC program which included the same electrical characteristics as real HTS power cable previously. Based on the research results, the authors analyzed fault current characteristics of HTS power cable using the developed EMTDC model component.

  • PDF

Power System Security Control Method for Quench Characteristic of High-Temperature Superconducting Cable (초전도 케이블의 Quench 특성에 대한 계통안전성 제어방식)

  • Lee, Geun-Joon;Hwang, Si-Dol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.29-35
    • /
    • 2005
  • This paper presents the basic quench protection idea for the HTS(High-Temperature Superconducting) cable. In Korea power system, the transfer capability of transmission line is limited by the voltage stability, HTS cable could be one of the countermeasure to enhance the transfer limit with its higher current capacity and lower impedance[1]. However, the quench characteristic makes not only HTS cable to loss its superconductivity, but also change the impedance of the transmission line and power system operating condition dramatically. This pheonominum threats HTS cable safety as well as power system security, therefore a proper protection scheme and security control counterplan have to be established before HTS cable implementation. In this paper, the quench characteristics of HTS cable for the fault current based on heat balance equation was established and a proper protection method regarding conventional protection system was suggested.

Effects Analysis of Partial Discharge Signal Propagation Characteristics in Underground Transmission Cables Using EMTP (EMTP를 이용한 지중송전케이블의 부분방전 신호 전파특성 분석)

  • Jung, Chae-Kyun;Jang, Tai-In
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.629-635
    • /
    • 2014
  • This paper describes propagation characteristics obtained by considering semiconducting screen and cross-bonding in underground transmission cables. The semiconducting screen of power cable has effect on propagation characteristics including attenuation, velocity and surge impedance. However, it is very difficult to apply the semiconduction screen for EMTP model because of the number of conductors limitation. Therefore, CIGRE WG 21-05 proposed advanced insulation structure and analysis technique of simplified approach including inner and outer semiconducting screen. In this paper, the various propagation characteristics analyse using this structure and technique for 154kV XLPE $2000mm^2$ cable. The frequency independent model of EMTP CABLE PARAMETER is used for just pattern analysis of propagation characteristics. For exact data analysis, the frequency dependent model of J-marti is used for EMTP modeling. From these result, various propagation characteristics of 154kV XLPE $2000mm^2$ cable according to semi conducting screen consideration, frequency range, cable length and pulse width are analysed. In addition, in this paper, the effects of cross-bonding are also variously discussed according to cross-bonding methods, direct connection and impedance of lead cable.

Fault Monitoring System for Cables Using a Compact Impedance Analyzer (소형 임피던스 분석기를 이용한 케이블의 결함 감시 시스템)

  • Yoon, Chai-Won;Yong, Hwan-Gu;Kim, Kwangho;Nah, Wansoo;Chae, Jang-Bum;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.872-879
    • /
    • 2017
  • This work presents a cable fault monitoring system based on the differential frequency domain reflectometry using a compact impedance analyser which is composed of a direct digital synthesizer, an op amp and a gain/phase detector with a micro controller. The proposed system can replace expensive vector network analysers for frequency domain reflectometry and therefore be deployed in sensor networks for long term multi-point cable monitoring. Effectiveness of the system is experimentally confirmed by diagnosing the status of the power cable.

Accuracy Improvement of Time Domain Impedance Measurement Using Error Calibration Method (오차 보정 방법을 이용한 시간 영역 임피던스 측정의 정확도 개선)

  • Roh, Hyun-Seung;Cui, Chenglin;Kim, Yang-Seok;Chae, Jang-Bum;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1315-1322
    • /
    • 2012
  • Frequency domain reflectometry diagnoses faults on electric cables by measuring the cable impedance. Time domain impedance measurement technique using an oscilloscope instead of a network analyzer is widely used for electric power cables under harsh environment or powered condition. However, impedance measurement in the time domain shows inaccuracy as the frequency increases due to several parasitic impedances, which results in the poor resolution of fault points. This paper presents the accuracy enhancement technique using a module with an operational amplifier and an error calibration method in the time domain impedance measurements, which is confirmed by comparing the cable impedance measurement results.