• Title/Summary/Keyword: Ca/sup 2+/

Search Result 817, Processing Time 0.024 seconds

Suppressive Impact of Ginsenoside-Rg2 on Catecholamine Secretion from the Rat Adrenal Medulla

  • Ha, Kang-Su;Kim, Ki-Hwan;Lim, Hyo-Jeong;Ki, Young-Jae;Koh, Young-Youp;Lim, Dong-Yoon
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.86-98
    • /
    • 2021
  • This study was designed to characterize the effect of ginsenoside-Rg2 (Rg2), one of panaxatriol saponins isolated from Korean ginseng root, on the release of catecholamines (CA) in the perfused model of the rat adrenal medulla, and also to establish its mechanism of action. Rg2 (3~30 µM), administered into an adrenal vein for 90 min, depressed acetylcholine (ACh)-induced CA secretion in a dose- and time-dependent manner. Rg2 also time-dependently inhibited the CA secretion induced by 3-(m-chloro-phenyl-carbamoyl-oxy)-2-butynyltrimethyl ammonium chloride (McN-A-343), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP), and angiotensin II (Ang II). Also, during perfusion of Rg2, the CA secretion induced by high K+, veratridine, cyclopiazonic acid, methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoro-methyl-phenyl)-pyridine-5-carboxylate (Bay-K-8644) depressed, respectively. In the simultaneous presence of Rg2 and Nω-nitro-L-arginine methyl ester hydrochloride ʟ-NAME), the CA secretion induced by ACh, Ang II, Bay-K-8644 and veratridine was restored nearly to the extent of their corresponding control level, respectively, compared to those of inhibitory effects of Rg2-treatment alone. Virtually, NO release in adrenal medulla following perfusion of Rg2 was significantly enhanced in comparison to the corresponding spontaneous release. Also, in the coexistence of Rg2 and fimasartan, ACh-induced CA secretion was markedly diminished compared to the inhibitory effect of fimasartan-treated alone. Collectively, these results demonstrated that Rg2 suppressed the CA secretion induced by activation of cholinergic as well as angiotensinergic receptors from the perfused model of the rat adrenal gland. This Rg2-induced inhibitory effect seems to be exerted by reducing both influx of Na+ and Ca2+ through their ionic channels into the adrenomedullary cells as well as by suppressing Ca2+ release from the cytoplasmic calcium store, at least through the elevated NO release by activation of NO synthase, which is associated to the blockade of neuronal cholinergic and AT1-receptors. Based on these results, the ingestion of Rg2 may be helpful to alleviate or prevent the cardiovascular diseases, via reduction of CA release in adrenal medulla and consequent decreased CA level in circulation.

A study of sintering behavior of spray coating in CaO-Al2O3-SiO2 glasses on Al2O3 substrate (CaO-Al2O3-SiO2 계 유리 스프레이 코팅막의 소성 거동에 대한 연구)

  • Na, Hyein;Park, Jewon;Park, Jae-Hyuk;Kim, Dae-Gun;Choi, Sung-Churl;Kim, Hyeong-Jun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.298-307
    • /
    • 2019
  • Two types of CaO-Al2O3-SiO2 (CAS) glass powder applied spray coating on the surface of sintered Al2O3 were researched for sintering behavior; (1) Si-rich, glass containing high content SiO2, (2) Ca-rich, containing high content CaO. Foaming of bubbles remaining inside the Ca-rich glass was produced at a viscosity of approximately 107~109 poise, resulting in decreasing shrinkage (interfering with sintering) and increasing surface roughness. In case of Si-rich glass, there was no serious foaming bubbles phenomenon like Ca-rich below 1000℃, however cristobalite crystals with low density occurred at 1200℃ and then produced re-foaming of bubbles, resulting in abnormal sintering behavior. These phenomenon is considered to be a decrease in viscosity due to an increase in the Ca content of the glass according to the formation of low-density cristobalite crystals. Therefore, in case of CAS glass, it is necessary to consider the increase of surface roughness and the sintering interference because of foaming bubbles phenomenon at low temperature sintering. Especially, when containing high SiO2 content, abnormal foaming phenomenon due to crystallization at high temperature should be predicted.

Screening of Eu3+-and Tb3+-Activated Phosphors for PDP in the System of CaO-Gd2O3-Al2O3 (CaO-Gd2O3-Al2O3계에서의 PDP용 Eu3+와 Tb3+ 활성 형광체의 탐색)

  • Park, Sang-Mi;Kim, Chang-Hae;Park, Hui-Dong;Jang, Ho-Gyeom;Park, Jun-Taek
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.336-345
    • /
    • 2002
  • In this study, we have screened $Eu^{3+}$- and $Tb^{3+}$-activated candidate phosphors for PDP in the sys-tems of CaO-Gd$_2$O$_3$-Al$_2$O$_3$ by combinatorial chemistry and investigated the synthetic temperature, optimum com-position and luminescent properties about the candidate phosphors. To construct the emission intensity library by VUV PL, we have synthesized 210 different compositional samples using a polymerized-complex method. Good luminescent samples were identified by X-ray diffraction method. $Ca_$\alpha$$G$d_{0.95-$\alpha$-$\beta$}Al_$\beta$O_$\delta$$ : Eu(0.02< $\alpha$+$\beta$ <0.04) phos-phors screened as a red phosphor have good color purity than commercial phosphor. In the candidate phosphors of CaGdAl$_3O_7$ : Tb, Ca$Al_{12}O_{19}$ : Tb, Gd$_4$Al$_2O_9$ : Tb, and Gd$_3Al_5O_{12}$ : Tb CaGdAl$_3O_7$ : Tb, and Ca$Al_{12}O_{19}$ : Tb have shorter decay time than commercial phosphor.

The purified extract of steamed Panax ginseng protects cardiomyocyte from ischemic injury via caveolin-1 phosphorylation-mediating calcium influx

  • Hai-Xia Li;Yan Ma;Yu-Xiao Yan;Xin-Ke Zhai;Meng-Yu Xin;Tian Wang;Dong-Cao Xu;Yu-Tong Song;Chun-Dong Song;Cheng-Xue Pan
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.755-765
    • /
    • 2023
  • Background: Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca2+ influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca2+ ([Ca2+]i) accumulation in cardiomyocytes. The purified extract of steamed Panax ginseng (EPG) attenuated [Ca2+]i overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca2+]i against MI injury in neonatal rat cardiomyocytes and a rat model. Methods: PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca2+]i concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured. Results: EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca2+ influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE via increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG. Conclusions: Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury via increasing p-caveolin-1 to negatively regulate SOCE/[Ca2+]i.

Synthesis and Luminescent Properties of Aluminate-based Phosphors Doped with Mn4+ Ions (Mn4+ 이온이 도핑된 알루미네이트계 형광체 합성과 발광특성)

  • Park, Jungkyu;Kim, Young Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • $Mn^{4+}$-doped $CaAl_4O_7$ ($CA_2$) and $CaAl_{12}O_{19}$ ($CA_6$) powders were prepared under different conditions, with changes in the amounts of flux, Mn concentration, and mole ratio of $Al_2O_3$ to $CaCO_3$ in the starting mixtures, which affected the structure and the luminescence. $CA_2:Mn^{4+}$ and $CA_6:Mn^{4+}$ had the same excitation and emission spectra but with different intensities. The excitation spectra exhibited broad bands (320 - 470 nm) centered at 395 nm, while red emission bands were observed at 656 nm. The emission intensity of $CA_6:Mn^{4+}$ was nearly twice as high as that of $CA_2:Mn^{4+}$, as the $Mn^{4+}$ ions were located in an octahedral crystal field in the $CA_6$, but not in the $CA_2$.

Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca+-CAMK2A- CREB1 pathway

  • Hyosun, Park;Sungsin, Jo;Mi-Ae, Jang;Sung Hoon, Choi;Tae-Hwan, Kim
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.627-632
    • /
    • 2022
  • Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts.

Point Defects and Photoluminescence of Green Phosphors Ca(1-1.5x)WO4:Tbx3+ and Ca(1-2x)WO4:Tbx3+, Nax+

  • Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.537-542
    • /
    • 2013
  • Two types of Tb- and Na-substituted green phosphors $Ca_{(1-1.5x)}WO_4:Tb_x^{3+}$: and $Ca_{(1-2x)}WO_4:Tb_x^{3+},Na_x^+$ were synthesized with various x values, using a solid-state reaction. The former phosphors contained both substitutional and vacancy point defects, while the later had only substitutional defects. X-ray diffraction results showed that the main diffraction peak, (112), was centered at $2{\theta}=28.72^{\circ}$ and indicated that there was no basic structural deformation caused by substitutions or vacancies. The photoluminescence emission and photoluminescence excitation spectra revealed the optical properties of trivalent terbium ions, $Tb^{3+}$. Typical transitions, $^5D_3{\rightarrow}^7F_6,\;^7F_5,\;^7F_4$ and $^5D_4{\rightarrow}^7F_6,\;^7F_5,\;^7F_4,\;^7F_3$, and cross relaxations were observed. Subtle differences in the photoluminescence of green phosphors were observed as a result of the point defects. The FT-IR spectra indicated that some of the ungerade vibrational modes had shifted positions and changed shapes, spreading out over a wide range of frequencies. This change can be attributed to the different masses of $Tb^{3+}$ and $Na^+$ ions and $V_{Ca}$" vacancies compared to $Ca^{2+}$ ions. The gerade normal modes of the Raman spectra exhibited subtle differences resulting from point defects in $Ca_{(1-1.5x)}Tb_xWO_4$ and $Ca_{(1-2x)}Tb_xNa_xWO_4$.

Role of Ca2+-activated Cl- Channels in the Stimulation of Melanin Synthesis Induced by Cyclosporin A in B16 Melanoma Cells (B16 흑색종세포에서 싸이클로스포린 A에 의한 멜라닌 합성 촉진효과에 미치는 칼슘-활성 염소 통로의 역할)

  • Lee, Yong Soo
    • YAKHAK HOEJI
    • /
    • v.59 no.4
    • /
    • pp.177-183
    • /
    • 2015
  • The mechanism of melanogenesis induced by cyclosporin A (CsA) was investigated in B16 melanoma cells. CsA stimulated the production of melanin in a dose-dependent manner in the cells. In addition, CsA increased intracellular $Ca^{2+}$ concentration in a dose-related fashion. Treatment with BAPTA/AM, an intracellular $Ca^{2+}$ chelator significantly inhibited the CsA-induced intracellular melanin synthesis. CsA profoundly induced $Cl^-$ efflux, which was significantly blocked by niflumic acid (NFA) and flufenamic acid (FFA), specific and nonspecific inhibitors of $Ca^{2+}$-activated $Cl^-$ channels (CaCCs), respectively. Furthermore, these inhibitors of CaCCs significantly inhibited the CsA-induced stimulation of melanin synthesis. Taken together, these results suggest that the activation of CaCCs may play an important role in the CsA-induced stimulation of melanin synthesis in B16 cells. These results further suggest that CaCCs may be a good target for the management of hyperpigmentation of the skin reported in the patients treated with CsA.

Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons

  • Yang, Yoon-Sil;Jeon, Sang-Chan;Kim, Dong-Kwan;Eun, Su-Yong;Jung, Sung-Cherl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.259-265
    • /
    • 2017
  • Excessive influx and the subsequent rapid cytosolic elevation of $Ca^{2+}$ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic $Ca^{2+}$ level in normal as well as pathological conditions. Delayed rectifier $K^+$ channels ($I_{DR}$ channels) play a role to suppress membrane excitability by inducing $K^+$ outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under $Ca^{2+}$-mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of $I_{DR}$ channels to hyperexcitable conditions induced by high $Ca^{2+}$ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high $Ca^{2+}$-treatment significantly increased the amplitude of $I_{DR}$ without changes of gating kinetics. Nimodipine but not APV blocked $Ca^{2+}$-induced $I_{DR}$ enhancement, confirming that the change of $I_{DR}$ might be targeted by $Ca^{2+}$ influx through voltage-dependent $Ca^{2+}$ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated $I_{DR}$ enhancement was not affected by either $Ca^{2+}$-induced $Ca^{2+}$ release (CICR) or small conductance $Ca^{2+}$-activated $K^+$ channels (SK channels). Furthermore, PP2 but not H89 completely abolished $I_{DR}$ enhancement under high $Ca^{2+}$ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for $Ca^{2+}$-mediated $I_{DR}$ enhancement. Thus, SFKs may be sensitive to excessive $Ca^{2+}$ influx through VDCCs and enhance $I_{DR}$ to activate a neuroprotective mechanism against $Ca^{2+}$-mediated hyperexcitability in neurons.

Interaction of NpO+2 with Cl- in Na-Ca-Cl-type solutions at ionic strength of 6M: Effect of presence of Ca ion on interaction

  • Nagasaki, Shinya;Saito, Takumi;Tsushima, Satoru;Goguen, Jared;Yang, Tammy
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1778-1782
    • /
    • 2017
  • The interaction of $NpO^+_2$ with $Cl^-$ was studied using visible-near-infrared spectroscopy in $NaCl-Ca-Cl_2-NaClO_4$, $NaCl-NaClO_4$, and $CaCl_2-NaClO_4$ solutions with ionic strength (I) of 6M. The spectra of $NpO^+_2$ around 980 nm varied with $Cl^-$ concentration in the $NaCl-CaCl_2-NaClO_4$ and $NaCl-NaClO_4$ solutions at [$Cl^-$] ${\geq}3.5M$, but not in the $CaCl_2-NaClO_4$ solution. Assuming the 1:1 interaction between $NpO^+_2$ and $Cl^-$, the apparent equilibrium constants at I = 6M were evaluated. The presence of $Ca^{2+}$ was found to destabilize overall interaction between $NpO^+_2$ and $Cl^-$. The observations were consistent with the density functional theory calculation.