Browse > Article
http://dx.doi.org/10.1016/j.net.2017.08.010

Interaction of NpO+2 with Cl- in Na-Ca-Cl-type solutions at ionic strength of 6M: Effect of presence of Ca ion on interaction  

Nagasaki, Shinya (Department of Engineering Physics, McMaster University)
Saito, Takumi (Department of Nuclear Engineering and Management, University of Tokyo)
Tsushima, Satoru (Institute of Resource Ecology)
Goguen, Jared (Department of Engineering Physics, McMaster University)
Yang, Tammy (Nuclear Waste Management Organization)
Publication Information
Nuclear Engineering and Technology / v.49, no.8, 2017 , pp. 1778-1782 More about this Journal
Abstract
The interaction of $NpO^+_2$ with $Cl^-$ was studied using visible-near-infrared spectroscopy in $NaCl-Ca-Cl_2-NaClO_4$, $NaCl-NaClO_4$, and $CaCl_2-NaClO_4$ solutions with ionic strength (I) of 6M. The spectra of $NpO^+_2$ around 980 nm varied with $Cl^-$ concentration in the $NaCl-CaCl_2-NaClO_4$ and $NaCl-NaClO_4$ solutions at [$Cl^-$] ${\geq}3.5M$, but not in the $CaCl_2-NaClO_4$ solution. Assuming the 1:1 interaction between $NpO^+_2$ and $Cl^-$, the apparent equilibrium constants at I = 6M were evaluated. The presence of $Ca^{2+}$ was found to destabilize overall interaction between $NpO^+_2$ and $Cl^-$. The observations were consistent with the density functional theory calculation.
Keywords
$Cl^-$; Density Functional Theory Calculation; Equilibrium Constants; Ionic Strength; $NpO^+_2$; Presence of $Ca^{2+}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.Y. Hobbs, S.K. Frape, O. Shouakar-Stash, L.R. Kennel, Regional Hydrogeochemistry e Southern Ontario, NWMO Technical Report NWMO DGR-TR-2011-12, 2011.
2 Waste Isolation Systems Panels, Board on Radioactive Waste Management, National Academy of Science, A Study of the Isolation System for Geologic Disposal of Radioactive Wastes, National Academy Press, Washington, DC, 1983.
3 P. Vilks, Sorption of Selected Radionuclides on Sedimentary Rocks in Saline Conditionsd-Literature Review, NWMO Technical Report NWMO TR-2011-12, 2011.
4 S. Nagasaki, T. Saito, T. Yang, Sorption behaviour of $NpO^^+_2$ on illite, shake and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 308 (2016) 143-153.   DOI
5 S. Topin, J. Aupiais, The pentavalent actinide solution chemistry in the environment, J. Environ. Radioact. 153 (2016) 237-244.   DOI
6 I. Gainar, K.W. Skyes, The spectra and stability of some neptunium complex ions in water and methanol, J. Chem. Soc. (1964) 4452-4459.   DOI
7 P.R.V. Rao, N.M. Gudi, S.V. Bagawde, S.K. Patil, The complexing of $NpO^^+_2$ by some inorganic ligands, J. Inorg. Nucl. Chem. 41 (1979) 235-239.   DOI
8 S.K. Patil, V.V. Ramakrishna, N.M. Gudi, Studies on complexing of some actinide ions in aqueous solutions, in: Proceedings of Nuclear Chemistry and Radiochemistry Symposium, Waltair, India, February 25-28, 1980, pp. 388-390.
9 V. Neck, J.I. Kim, B. Kannellakopoulos, Thermodynamisches verhalten von Neptunium(V) in konzentrieren NaCl- und $NaClO_{4^-}$losungen, Kernforschungszentrum Karlsruhe, Tech. Rep. KfK 5301 [in German], 1997.
10 R. Guillaumont, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam, 2003.
11 D. Cohen, J.C. Sullivan, J.C. Hindman, Isotopic exchange reactions of neptunium ions in solution: III. The effect of chloride and nitrate ions on the rate of the $NpO_2^+$-Np(VI) exchange, J. Am. Chem. Soc. 77 (1955) 4964-4968.   DOI
12 N.S. Al-Niaimi, A.G. Wain, H.A.C. McKay, Stability constants of the chloride and nitrate complexes of neptunium(V) and neptunium(VI), J. Inorg. Nucl. Chem. 32 (1970) 977-986.   DOI
13 P.R. Danesi, R. Chiariza, G. Scibona, G.J. D'Alessandro, Re-evaluation of the stability constants of $NpO_2^+$ and Np(VI) chloride complexes, J. Inorg. Nucl. Chem. 36 (1974) 2396.   DOI
14 P.R. Danesi, R. Chiarizia, G. Scibona, G. D'Alessandro, Stability constants of nitrate and chloride complexes of Np(IV), $NpO_2^+$ and Np(VI) ions, J. Inorg. Nucl. Chem. 33 (1971) 3503-3510.   DOI
15 S. Topin, J. Aupiais, N. Baglan, T. Vercouter, P. Vitorge, P. Moisy, Trace metal speciation by capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry: sulfate and chloride complexes of $NpO_2^+$ and Pu(V), Anal. Chem. 81 (2009) 5354-5363.   DOI
16 E. Giffaut, Influence des ions chlorure sur la chimie des actinides. Effects de la radiolyse er de la temperature, These de l'Universite Paris-Sud 11, Orsay, 1994 (in French).
17 P.G. Allen, J.J. Bucher, D.K. Shuh, N.M. Edelstein, T. Reich, Investigation of aquo and chloro complexes of $UO^{2+}_2,\;NpO_2^+,\;Np^{4+},\;and\;Pu^{3+}$ by X-ray absorption fine structure spectroscopy, Inorg. Chem. 36 (1997) 4676-4683.   DOI
18 V.G. Petrov, D. Fellhauer, X. Gaona, K. Dardenne, J. Rothe, S.N. Kalmykov, M. Altmaier, Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions; formation of Na-Np(V)-OH solid phases at $22^{\circ}C$, Radiochim. Acta 105 (2017) 1-20.   DOI
19 THEREDA (Thermodynamic Reference Database) [Internet]. [cited 2017 Jun 5]. Available from: www.thereda.de/en.
20 M. Richmann, Structure and speciation of $NpO_2^+$ in high-ionic strength NaCl and $NaClO_4$, in: Proceedings of Actinide Brine Chemistry in a Salt-Based Repository, Heidelberg, Germany, April 14-15, 2015.
21 A.D. Becke, Density-functional thermochemistry: III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652.   DOI
22 R. Copping, V. Mougel, S. Petit, C.D. Auwer, P. Moisy, M. Mazzanti, A versatile precursor for non-aqueous neptunyl(V) chemistry, Chem. Commun. 47 (2011) 5497-5499.   DOI
23 S. Matsik, R.M. Pitzer, D.T. Reed, Intensities in the spectra of actinyl ions, J. Phys. Chem. A 104 (2000) 11983-11992.   DOI
24 V. Neck, Th. Fanghanel, J.I. Kim, Mixed hydroxo-carbonate complexes of neptunium(V), Radiochim. Acta 77 (1997) 167-175.
25 C. Lee, W. Yang, R.G. Parr, Development of the ColleeSalvetti correlationenergy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 875.
26 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 Revision D.2, Gaussian Inc., Wallingford, CT, 2009.
27 W. Kuchle, M. Dolg, H. Stoll, H. Preuss, Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide, J. Chem. Phys. 100 (1994) 7535-7542.   DOI
28 V. Barone, M. Cossi, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A 102 (1998) 1995-2001.   DOI
29 R. Krishnan, J. Binkley, R. Seeger, J. Pople, Self-consistent molecular orbital methods: XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1980) 650-654.   DOI
30 S. Tsushima, yl-Oxygen exchange in uranyl(VI) ion: a mechanism Involving $(UO_2)_2({\mu}-OH)_2^^{+2}$ via U-$O_{yl}$-U bridge formation, Inorg. Chem. 51 (2012) 1434-1439.   DOI
31 M. Cossi, N. Rega, G. Scalmani, V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem. 24 (2003) 669-681.   DOI
32 S. Tsushima, On the yl bond weakening in uranyl(VI) coordination complexes, Dalton Trans. 40 (2011) 6732-6737.   DOI
33 S. Tsushima, U. Wahlgren, I. Grenthe, Quantum chemical calculations of reduction potentials of $AnO_2^{2+}/AnO_2^+$ (An = U, Np, Pu, Am) and $Fe^{3+}/Fe^{2+}$ couples, J. Phys. Chem. 110 (2006) 9175-9182.   DOI