DOI QR코드

DOI QR Code

Role of Ca2+-activated Cl- Channels in the Stimulation of Melanin Synthesis Induced by Cyclosporin A in B16 Melanoma Cells

B16 흑색종세포에서 싸이클로스포린 A에 의한 멜라닌 합성 촉진효과에 미치는 칼슘-활성 염소 통로의 역할

  • Received : 2015.07.01
  • Accepted : 2015.07.22
  • Published : 2015.08.30

Abstract

The mechanism of melanogenesis induced by cyclosporin A (CsA) was investigated in B16 melanoma cells. CsA stimulated the production of melanin in a dose-dependent manner in the cells. In addition, CsA increased intracellular $Ca^{2+}$ concentration in a dose-related fashion. Treatment with BAPTA/AM, an intracellular $Ca^{2+}$ chelator significantly inhibited the CsA-induced intracellular melanin synthesis. CsA profoundly induced $Cl^-$ efflux, which was significantly blocked by niflumic acid (NFA) and flufenamic acid (FFA), specific and nonspecific inhibitors of $Ca^{2+}$-activated $Cl^-$ channels (CaCCs), respectively. Furthermore, these inhibitors of CaCCs significantly inhibited the CsA-induced stimulation of melanin synthesis. Taken together, these results suggest that the activation of CaCCs may play an important role in the CsA-induced stimulation of melanin synthesis in B16 cells. These results further suggest that CaCCs may be a good target for the management of hyperpigmentation of the skin reported in the patients treated with CsA.

Keywords

References

  1. Simon, J. D., Peles, D., Wakamatsu, K. and Ito, S. : Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res. 22, 563 (2009). https://doi.org/10.1111/j.1755-148X.2009.00610.x
  2. Speeckaert, R., Van Gele, M., Speeckaert, M. M., Lambert, J. and van Geel, N. : The biology of hyperpigmentation syndromes. Pigment Cell Melanoma Res. 27, 512 (2014). https://doi.org/10.1111/pcmr.12235
  3. Casanola-Martin, G. M., Le-Thi-Thu, H., Marrero-Ponce, Y., Castillo-Garit, J. A., Torrens, F., Rescigno, A., Abad, C. and Khan, M. T. : Tyrosinase enzyme: an overview on a pharmacological target. Curr. Top. Med. Chem. 14, 1494 (2014). https://doi.org/10.2174/1568026614666140523121427
  4. Alexis, A. F. : New and emerging treatments for hyperpigmentation. J. Drugs Dermatol. 13, 382 (2014).
  5. Page, E. H., Wexler, D. M. and Guenther, L. C. : Cyclosporin A. J. Am. Acad. Dermatol. 14, 785 (1986). https://doi.org/10.1016/S0190-9622(86)70094-7
  6. Mueller, W. and Herrmann, B. : Cyclosporin A for psoriasis. N. Engl. J. Med. 301, 555 (1979).
  7. Bencini, P. L., Montagnino, G., Sala, F., De Vecchi, A., Crosti, C. and Tarantino, A. : Cutaneous lesions in 67 cyclosporin-treated renal transplant recipients. Dermatologica 172, 24 (1986). https://doi.org/10.1159/000249288
  8. Wysocki, G. P. and Daley, T. D. : Hypertrichosis in patients receiving cyclosporine therapy. Clin. Exp. Dermatol. 12, 191 (1987). https://doi.org/10.1111/j.1365-2230.1987.tb01893.x
  9. Daley, T. D., Wysocki, G. P. and Day, C. : Clinical and pharmacologic correlations in cyclosporine-induced gingival hyperplasia. Oral Surg. Oral Med. Oral Pathol. 62, 417 (1986). https://doi.org/10.1016/0030-4220(86)90291-4
  10. Brady, A. J. and Wing, A. J. : Hyperpigmentation due to cyclosporin therapy. Nephrol. Dial. Transplant. 4, 309 (1989). https://doi.org/10.1093/oxfordjournals.ndt.a091879
  11. Ozkaya-Bayazit, E., Diz-Kucukkaya, R., Akasya, E., Buyukbabani, N., Oncu, S. and Pekcelen, Y. : Bullous acral erythema and concomitant pigmentation on the face and occluded skin. J. Eur. Acad. Dermatol. Venereol. 14, 139 (2000). https://doi.org/10.1046/j.1468-3083.2000.00037.x
  12. Szepietowski, J., Wasik, F., Szepietowski, T., Wlodarczyk, M., Sobczak-Radwan, K. and Czyz, W. : Excess benign melanocytic naevi in renal transplant recipients. Dermatology 194, 17 (1997). https://doi.org/10.1159/000246050
  13. Rebora, A., Delmonte, S. and Parodi, A. : Cyclosporin A-induced hair darkening. Int. J. Dermatol. 38, 229 (1999).
  14. Asensio, V., del Pozo, L. J., Asensio, M. and Lerida, M. T. : Megalotrichiasis and poliosis caused by cyclosporin A. Med. Clin. (Barc) 97, 39 (1991).
  15. Lee, J. Y. and Kang, W. H. : Effect of cyclosporin A on melanogenesis in cultured human melanocytes. Pigment Cell Res. 16, 504 (2003). https://doi.org/10.1034/j.1600-0749.2003.00081.x
  16. Kaneko, H., Nakamura, T. and Lindemann, B. : Noninvasive measurement of chloride concentration in rat olfactory receptor cells with use of a fluorescent dye. Am. J. Physiol. Cell Physiol. 280, C1387 (2001). https://doi.org/10.1152/ajpcell.2001.280.6.C1387
  17. Cebrian, C., Areste, C., Nicolas, A., Olive, P., Carceller, A., Piulats, J. and Meseguer, A. : Kidney androgen-regulated protein interacts with cyclophilin B and reduces cyclosporine A-mediated toxicity in proximal tubule cells. J. Biol. Chem. 276, 29410 (2001). https://doi.org/10.1074/jbc.M102916200
  18. Roy, M. K., Takenaka, M., Kobori, M., Nakahara, K., Isobe, S. and Tsushida, T. : Apoptosis, necrosis and cell proliferation-inhibition by cyclosporine A in U937 cells (a human monocytic cell line). Pharmacol. Res. 53, 293 (2006). https://doi.org/10.1016/j.phrs.2005.12.007
  19. Lee, Y. S., Kim, D. W., Kim, S., Choi, H. I., Lee, Y., Kim, C. D., Lee, J. H., Lee, S. D. and Lee, Y. H. : Downregulation of NFAT2 promotes melanogenesis in B16 melanoma cells. Anat. Cell. Biol. 43, 303 (2010). https://doi.org/10.5115/acb.2010.43.4.303
  20. Lee, Y. S. : Role of intracellular $Ca^{2+}$ in the lovastatin-induced stimulation of melanin synthesis in B16 melanoma cells. Yakhak Hoeji 57, 24 (2013).
  21. Kim, J. A., Kang, Y. S. and Lee, Y. S. : Role of $Ca^{2+}$-activated $Cl^-$ channels in the mechanism of apoptosis induced by cyclosporin A in a human hepatoma cell line. Biochem. Biophys. Res. Commun. 309, 291 (2003). https://doi.org/10.1016/j.bbrc.2003.07.004
  22. Carsberg, C. J., Jones, K. T., Sharpe, G. R. and Friedmann, P. S. : Intracellular calcium modulates the responses of human melanocytes to melanogenic stimuli. J. Dermatol. Sci. 9, 157 (1995). https://doi.org/10.1016/0923-1811(94)00372-L
  23. Han, H. Y., Lee, J. R., Xu, W. A., Hahn, M. J., Yang, J. M. and Park, Y. D. : Effect of $Cl^-$ on tyrosinase: complex inhibition kinetics and biochemical implication. J. Biomol. Struct. Dyn. 25, 165 (2007). https://doi.org/10.1080/07391102.2007.10507165
  24. Frings, S., Reuter, D. and Kleene, S. J. : Neuronal $Ca^{2+}$-activated $Cl^-$ channels-homing in on an elusive channel species. Prog. Neurobiol. 60, 247 (2000). https://doi.org/10.1016/S0301-0082(99)00027-1
  25. Hartzell, H. C., Yu, K., Xiao, Q., Chien, L. T. and Qu, Z. : Anoctamin/TMEM16 family members are $Ca^{2+}$-activated $Cl^-$ channels. J. Physiol. 587, 2127 (2009). https://doi.org/10.1113/jphysiol.2008.163709
  26. Elble, R. C., Ji, G., Nehrke, K., DeBiasio, J., Kingsley, P. D., Kotlikoff, M. I. and Pauli, B. U. : Molecular and functional characterization of a murine calcium-activated chloride channel expressed in smooth muscle. J. Biol. Chem. 277, 18586 (2002). https://doi.org/10.1074/jbc.M200829200
  27. Gomez-Pinilla, P. J., Gibbons, S. J., Bardsley, M. R., Lorincz, A., Pozo, M. J., Pasricha, P. J., Van de Rijn, M., West, R. B., Sarr, M. G., Kendrick, M. L., Cima, R. R., Dozois, E. J., Larson, D. W., Ordog, T. and Farrugia, G. : Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1370 (2009). https://doi.org/10.1152/ajpgi.00074.2009
  28. Caputo, A., Caci, E., Ferrera, L., Pedemonte, N., Barsanti, C., Sondo, E., Pfeffer, U., Ravazzolo, R., Zegarra-Moran, O. and Galietta, L. J. : TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590 (2008). https://doi.org/10.1126/science.1163518
  29. Rasche, S., Toetter, B., Adler, J., Tschapek, A., Doerner, J. F., Kurtenbach, S., Hatt, H., Meyer, H., Warscheid, B. and Neuhaus, E. M. : Tmem16b is specifically expressed in the cilia of olfactory sensory neurons. Chem. Senses 35, 239 (2010). https://doi.org/10.1093/chemse/bjq007
  30. Penafiel, R., Galindo, J. D., Solano, F., Pedreno, E., Iborra, J. L. and Lozano, J. A. : Kinetic study of the interaction between frog epidermis tyrosinase and chloride. Biochim. Biophys. Acta 788, 327 (1984). https://doi.org/10.1016/0167-4838(84)90045-1
  31. Park, Y. D., Kim, S. Y., Lyou, Y. J., Lee, J. Y. and Yang, J. M. : A new type of uncompetitive inhibition of tyrosinase induced by $Cl^-$ binding. Biochimie 87, 931 (2005). https://doi.org/10.1016/j.biochi.2005.06.006
  32. Matthew, E., Laskin, J. D., Zimmerman, E. A., Weinstein, I. B., Hsu, K. C. and Engelhardt, D. L. : Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells. Proc. Natl. Acad. Sci. U. S. A. 78, 3935 (1981). https://doi.org/10.1073/pnas.78.6.3935
  33. Kim, N. H., Cheong, K. A., Lee, T. R. and Lee, A. Y. : PDZK1 upregulation in estrogen-related hyperpigmentation in melasma. J. Invest. Dermatol. 132, 2622 (2012). https://doi.org/10.1038/jid.2012.175