DOI QR코드

DOI QR Code

Point Defects and Photoluminescence of Green Phosphors Ca(1-1.5x)WO4:Tbx3+ and Ca(1-2x)WO4:Tbx3+, Nax+

  • Cho, Seon-Woog (Department of Materials Science and Engineering, Silla University)
  • Received : 2013.08.14
  • Accepted : 2013.09.10
  • Published : 2013.09.27

Abstract

Two types of Tb- and Na-substituted green phosphors $Ca_{(1-1.5x)}WO_4:Tb_x^{3+}$: and $Ca_{(1-2x)}WO_4:Tb_x^{3+},Na_x^+$ were synthesized with various x values, using a solid-state reaction. The former phosphors contained both substitutional and vacancy point defects, while the later had only substitutional defects. X-ray diffraction results showed that the main diffraction peak, (112), was centered at $2{\theta}=28.72^{\circ}$ and indicated that there was no basic structural deformation caused by substitutions or vacancies. The photoluminescence emission and photoluminescence excitation spectra revealed the optical properties of trivalent terbium ions, $Tb^{3+}$. Typical transitions, $^5D_3{\rightarrow}^7F_6,\;^7F_5,\;^7F_4$ and $^5D_4{\rightarrow}^7F_6,\;^7F_5,\;^7F_4,\;^7F_3$, and cross relaxations were observed. Subtle differences in the photoluminescence of green phosphors were observed as a result of the point defects. The FT-IR spectra indicated that some of the ungerade vibrational modes had shifted positions and changed shapes, spreading out over a wide range of frequencies. This change can be attributed to the different masses of $Tb^{3+}$ and $Na^+$ ions and $V_{Ca}$" vacancies compared to $Ca^{2+}$ ions. The gerade normal modes of the Raman spectra exhibited subtle differences resulting from point defects in $Ca_{(1-1.5x)}Tb_xWO_4$ and $Ca_{(1-2x)}Tb_xNa_xWO_4$.

Keywords

References

  1. S. Cho and S. -W. Cho, Kor. J. Mater. Res., 22, 215 (2012) (in Korean). https://doi.org/10.3740/MRSK.2012.22.5.215
  2. S. -W. Cho, Bull. Korean Chem. Soc., 34(9), 2769 (2013). https://doi.org/10.5012/bkcs.2013.34.9.2769
  3. G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, Germany, (1994).
  4. T. E. Warner, Synthesis, Properties and Mineralogy of Important Inorganic Materials, p. 228-239, John Wiley and Sons, U. K., (2011).
  5. N. G. Connelly, T. Damhus, R. M. Hartshorn and A. T. Hutton, Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005, p. 238-241, RSC Publishing, Cambridge, U. K., (2005).
  6. S. Shi, J. Gao and J. Zhou, Optical Materials, 30, 1616 (2008). https://doi.org/10.1016/j.optmat.2007.10.007
  7. P. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong, Inorganic Chemistry, 4th ed., p.259, Oxford University Press, Oxford, U. K., (2006).
  8. Z. C. Kang and L. Eyring, J. Alloy. Compd., 249, 206 (1997). https://doi.org/10.1016/S0925-8388(96)02633-3
  9. G. Qiu, D. Wang, X. Jin and G. Z. Chen, Electrochemica Acta, 51, 5785 (2006). https://doi.org/10.1016/j.electacta.2006.03.019
  10. K. Nassau and G. M. Loiacono, J. Phys. Chem. Solds, 24, 1503 (1963). https://doi.org/10.1016/0022-3697(63)90090-8
  11. R. D. Shannon, Acta Cryst., A32, 751 (1976).
  12. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., p.339, Prentice Hall, U. S. A., (2001).
  13. R. J. D. Tilley, Defects in Solids, p. 13-14, John Wiley & Sons, U. S. A., (2008).
  14. Y. -M. Chiang, D. Birnie, III and W. D. Kingery, Physical Ceramics p.131, John Wiley & Sons, U. S. A., (1997).
  15. C. A. Kodaira, H. F. Brito and M. C. F. C. Felinto, Journal of Solid State Chemistry, 171, 401 (2003). https://doi.org/10.1016/S0022-4596(02)00221-9
  16. J. Liao, B. Qiu, H. Wen and W. You, Optical Materials, 31, 1513 (2009). https://doi.org/10.1016/j.optmat.2009.02.014
  17. H. Wu, Y. Hu, F. Kang, L. Chen, X. Wang, G. Ju and Z. Mu, Materials Research Bulletin, 46, 2489 (2011). https://doi.org/10.1016/j.materresbull.2011.08.022
  18. B. Di Bartolo, Optical Interactions in Solids, 2nd ed., p.188, World Scientific, Singapore, (2010).
  19. E. Cavalli, P. Boutinaud, R. Mahiou, M. Bettinelli and P. Dorenbos, Inorg. Chem., 49, 4916 (2010). https://doi.org/10.1021/ic902445c
  20. Y. Tian, B. Chen, H. Yu, R. Hua, X. Li, J. Sun, L. Cheng, H. Zhong, J. Zhang, Y. Zheng, T. Yu and L. Huang, Journal of Colloid and Interface Science, 360, 586 (2011). https://doi.org/10.1016/j.jcis.2011.04.094
  21. D. L. Rousseau, R. P. Bauman and S. P. S. Porto, J. Raman Spectrosc., 10, 253 (1981). https://doi.org/10.1002/jrs.1250100152
  22. L. Gracia, V. M. Longo, L. S. Cavalcante, A. Beltran, W. Avansi, M. S. Li, V. R. Mastelaro, J. A. Varela, E. Longo and J. Andrs, J. Appl. Phys., 110, 043501 (2011). https://doi.org/10.1063/1.3615948
  23. L. S. Cavalcante, V. M. Longo, J. C. Sczancoski, M. A. Almeida, J. A. Batista, J. A. Varela, M. O. Orlandi, E. Longo and M. S. Li, CrystEngComm, 14, 853 (2012). https://doi.org/10.1039/c1ce05977g