DOI QR코드

DOI QR Code

Interaction of NpO+2 with Cl- in Na-Ca-Cl-type solutions at ionic strength of 6M: Effect of presence of Ca ion on interaction

  • Received : 2017.06.12
  • Accepted : 2017.08.14
  • Published : 2017.12.25

Abstract

The interaction of $NpO^+_2$ with $Cl^-$ was studied using visible-near-infrared spectroscopy in $NaCl-Ca-Cl_2-NaClO_4$, $NaCl-NaClO_4$, and $CaCl_2-NaClO_4$ solutions with ionic strength (I) of 6M. The spectra of $NpO^+_2$ around 980 nm varied with $Cl^-$ concentration in the $NaCl-CaCl_2-NaClO_4$ and $NaCl-NaClO_4$ solutions at [$Cl^-$] ${\geq}3.5M$, but not in the $CaCl_2-NaClO_4$ solution. Assuming the 1:1 interaction between $NpO^+_2$ and $Cl^-$, the apparent equilibrium constants at I = 6M were evaluated. The presence of $Ca^{2+}$ was found to destabilize overall interaction between $NpO^+_2$ and $Cl^-$. The observations were consistent with the density functional theory calculation.

Keywords

References

  1. M.Y. Hobbs, S.K. Frape, O. Shouakar-Stash, L.R. Kennel, Regional Hydrogeochemistry e Southern Ontario, NWMO Technical Report NWMO DGR-TR-2011-12, 2011.
  2. Waste Isolation Systems Panels, Board on Radioactive Waste Management, National Academy of Science, A Study of the Isolation System for Geologic Disposal of Radioactive Wastes, National Academy Press, Washington, DC, 1983.
  3. P. Vilks, Sorption of Selected Radionuclides on Sedimentary Rocks in Saline Conditionsd-Literature Review, NWMO Technical Report NWMO TR-2011-12, 2011.
  4. S. Nagasaki, T. Saito, T. Yang, Sorption behaviour of $NpO^^+_2$ on illite, shake and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 308 (2016) 143-153. https://doi.org/10.1007/s10967-015-4332-x
  5. S. Topin, J. Aupiais, The pentavalent actinide solution chemistry in the environment, J. Environ. Radioact. 153 (2016) 237-244. https://doi.org/10.1016/j.jenvrad.2015.12.016
  6. I. Gainar, K.W. Skyes, The spectra and stability of some neptunium complex ions in water and methanol, J. Chem. Soc. (1964) 4452-4459. https://doi.org/10.1039/jr9640004452
  7. P.R.V. Rao, N.M. Gudi, S.V. Bagawde, S.K. Patil, The complexing of $NpO^^+_2$ by some inorganic ligands, J. Inorg. Nucl. Chem. 41 (1979) 235-239. https://doi.org/10.1016/0022-1902(79)80520-5
  8. S.K. Patil, V.V. Ramakrishna, N.M. Gudi, Studies on complexing of some actinide ions in aqueous solutions, in: Proceedings of Nuclear Chemistry and Radiochemistry Symposium, Waltair, India, February 25-28, 1980, pp. 388-390.
  9. V. Neck, J.I. Kim, B. Kannellakopoulos, Thermodynamisches verhalten von Neptunium(V) in konzentrieren NaCl- und $NaClO_{4^-}$losungen, Kernforschungszentrum Karlsruhe, Tech. Rep. KfK 5301 [in German], 1997.
  10. R. Guillaumont, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam, 2003.
  11. D. Cohen, J.C. Sullivan, J.C. Hindman, Isotopic exchange reactions of neptunium ions in solution: III. The effect of chloride and nitrate ions on the rate of the $NpO_2^+$-Np(VI) exchange, J. Am. Chem. Soc. 77 (1955) 4964-4968. https://doi.org/10.1021/ja01624a005
  12. N.S. Al-Niaimi, A.G. Wain, H.A.C. McKay, Stability constants of the chloride and nitrate complexes of neptunium(V) and neptunium(VI), J. Inorg. Nucl. Chem. 32 (1970) 977-986. https://doi.org/10.1016/0022-1902(70)80077-X
  13. P.R. Danesi, R. Chiarizia, G. Scibona, G. D'Alessandro, Stability constants of nitrate and chloride complexes of Np(IV), $NpO_2^+$ and Np(VI) ions, J. Inorg. Nucl. Chem. 33 (1971) 3503-3510. https://doi.org/10.1016/0022-1902(71)80672-3
  14. S. Topin, J. Aupiais, N. Baglan, T. Vercouter, P. Vitorge, P. Moisy, Trace metal speciation by capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry: sulfate and chloride complexes of $NpO_2^+$ and Pu(V), Anal. Chem. 81 (2009) 5354-5363. https://doi.org/10.1021/ac900275d
  15. E. Giffaut, Influence des ions chlorure sur la chimie des actinides. Effects de la radiolyse er de la temperature, These de l'Universite Paris-Sud 11, Orsay, 1994 (in French).
  16. P.R. Danesi, R. Chiariza, G. Scibona, G.J. D'Alessandro, Re-evaluation of the stability constants of $NpO_2^+$ and Np(VI) chloride complexes, J. Inorg. Nucl. Chem. 36 (1974) 2396. https://doi.org/10.1016/0022-1902(74)80293-9
  17. P.G. Allen, J.J. Bucher, D.K. Shuh, N.M. Edelstein, T. Reich, Investigation of aquo and chloro complexes of $UO^{2+}_2,\;NpO_2^+,\;Np^{4+},\;and\;Pu^{3+}$ by X-ray absorption fine structure spectroscopy, Inorg. Chem. 36 (1997) 4676-4683. https://doi.org/10.1021/ic970502m
  18. V.G. Petrov, D. Fellhauer, X. Gaona, K. Dardenne, J. Rothe, S.N. Kalmykov, M. Altmaier, Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions; formation of Na-Np(V)-OH solid phases at $22^{\circ}C$, Radiochim. Acta 105 (2017) 1-20. https://doi.org/10.1515/ract-2016-2614
  19. THEREDA (Thermodynamic Reference Database) [Internet]. [cited 2017 Jun 5]. Available from: www.thereda.de/en.
  20. M. Richmann, Structure and speciation of $NpO_2^+$ in high-ionic strength NaCl and $NaClO_4$, in: Proceedings of Actinide Brine Chemistry in a Salt-Based Repository, Heidelberg, Germany, April 14-15, 2015.
  21. R. Copping, V. Mougel, S. Petit, C.D. Auwer, P. Moisy, M. Mazzanti, A versatile precursor for non-aqueous neptunyl(V) chemistry, Chem. Commun. 47 (2011) 5497-5499. https://doi.org/10.1039/c1cc11010a
  22. S. Matsik, R.M. Pitzer, D.T. Reed, Intensities in the spectra of actinyl ions, J. Phys. Chem. A 104 (2000) 11983-11992. https://doi.org/10.1021/jp002580s
  23. V. Neck, Th. Fanghanel, J.I. Kim, Mixed hydroxo-carbonate complexes of neptunium(V), Radiochim. Acta 77 (1997) 167-175.
  24. A.D. Becke, Density-functional thermochemistry: III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913
  25. C. Lee, W. Yang, R.G. Parr, Development of the ColleeSalvetti correlationenergy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 875.
  26. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 Revision D.2, Gaussian Inc., Wallingford, CT, 2009.
  27. W. Kuchle, M. Dolg, H. Stoll, H. Preuss, Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide, J. Chem. Phys. 100 (1994) 7535-7542. https://doi.org/10.1063/1.466847
  28. R. Krishnan, J. Binkley, R. Seeger, J. Pople, Self-consistent molecular orbital methods: XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1980) 650-654. https://doi.org/10.1063/1.438955
  29. S. Tsushima, yl-Oxygen exchange in uranyl(VI) ion: a mechanism Involving $(UO_2)_2({\mu}-OH)_2^^{+2}$ via U-$O_{yl}$-U bridge formation, Inorg. Chem. 51 (2012) 1434-1439. https://doi.org/10.1021/ic201679e
  30. V. Barone, M. Cossi, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A 102 (1998) 1995-2001. https://doi.org/10.1021/jp9716997
  31. M. Cossi, N. Rega, G. Scalmani, V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem. 24 (2003) 669-681. https://doi.org/10.1002/jcc.10189
  32. S. Tsushima, On the yl bond weakening in uranyl(VI) coordination complexes, Dalton Trans. 40 (2011) 6732-6737. https://doi.org/10.1039/c1dt10481k
  33. S. Tsushima, U. Wahlgren, I. Grenthe, Quantum chemical calculations of reduction potentials of $AnO_2^{2+}/AnO_2^+$ (An = U, Np, Pu, Am) and $Fe^{3+}/Fe^{2+}$ couples, J. Phys. Chem. 110 (2006) 9175-9182. https://doi.org/10.1021/jp062295u