• Title/Summary/Keyword: CRIME

Search Result 1,441, Processing Time 0.024 seconds

Cyber forensics domain ontology for cyber criminal investigation (사이버 범죄 수사를 위한 사이버 포렌식 범주 온톨로지)

  • Park, Heum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1687-1692
    • /
    • 2009
  • Cyber forensics is used the process and technology of digital forensics as a criminal investigation in cyber space. Cyber crime is classified into cyber terror and general cyber crime, and those two classes are connected with each other. The investigation of cyber terror requires high technology, system environment and experts, and general cyber crime is connected with general crime by evidence from digital data in cyber space. Accordingly, it is difficult to determine relational crime types, collect evidence and the legal admissibility of evidence. Therefore, we considered the classifications of cyber crime, the collection of evidence in cyber space and the application of laws to cyber crime. In order to efficiently investigate cyber crime, it is necessary to integrate those concepts for each cyber crime-case. In this paper, we constructed a cyber forensics domain ontology for cyber criminal investigation using the concepts, relations and properties, according to categories of cyber crime, laws, evidence, and information of criminals and crime-cases. This ontology can be used in the process of investigating of cyber crime-cases, and for data mining of cyber crime; classification, clustering, association and detection of crime types, crime cases, evidences and criminals.

Analysis of relationship between frequency of crime occurrence and frequency of web search (범죄 발생 빈도수와 웹 검색 빈도수의 관계 분석 연구)

  • Park, Jung-Min;Park, Koo-Rack;Chung, Young-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.15-20
    • /
    • 2018
  • In modern society, crime is one of the major social problems. Crime has a great impact not only on victims but also on those around them. It is important to predict crimes before they occur and to prevent crime. Various studies have been conducted to predict crime. One of the most important factors in predicting crime is frequency of crime occurrence. The frequency of crime is widely used as basic data for predicting crime. However, the frequency of crime occurrence is announced about 2 years after the statistical processing period. In this paper, we propose a frequency analysis of crime - related key words retrieved from the web as a way to indirectly grasp the frequency of crime occurrence. The relationship between the number of frequency of crime occurrence and frequency of actual crime occurrence was analyzed by correlation coefficient.

An Analysis of Relationship Between Word Frequency in Social Network Service Data and Crime Occurences (소셜 네트워크 서비스의 단어 빈도와 범죄 발생과의 관계 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.9
    • /
    • pp.229-236
    • /
    • 2016
  • In the past, crime prediction methods utilized previous records to accurately predict crime occurrences. Yet these crime prediction models had difficulty in updating immense data. To enhance the crime prediction methods, some approaches used social network service (SNS) data in crime prediction studies, but the relationship between SNS data and crime records has not been studied thoroughly. Hence, in this paper, we analyze the relationship between SNS data and criminal occurrences in the perspective of crime prediction. Using Latent Dirichlet Allocation (LDA), we extract tweets that included any words regarding criminal occurrences and analyze the changes in tweet frequency according to the crime records. We then calculate the number of tweets including crime related words and investigate accordingly depending on crime occurrences. Our experimental results demonstrate that there is a difference in crime related tweet occurrences when criminal activity occurs. Moreover, our results show that SNS data analysis will be helpful in crime prediction model as there are certain patterns in tweet occurrences before and after the crime.

Learning Method for Real-time Crime Prediction Model Utilizing CCTV

  • Bang, Seung-Hwan;Cho, Hyun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.91-98
    • /
    • 2016
  • We propose a method to train a model that can predict the probability of a crime being committed. CCTV data by matching criminal events are required to train the crime prediction model. However, collecting CCTV data appropriate for training is difficult. Thus, we collected actual criminal records and converted them to an appropriate format using variables by considering a crime prediction environment and the availability of real-time data collection from CCTV. In addition, we identified new specific crime types according to the characteristics of criminal events and trained and tested the prediction model by applying neural network partial least squares for each crime type. Results show a level of predictive accuracy sufficiently significant to demonstrate the applicability of CCTV to real-time crime prediction.

A multi-dimensional crime spatial pattern analysis and prediction model based on classification

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.272-287
    • /
    • 2021
  • This article presents a multi-dimensional spatial pattern analysis of crime events in San Francisco. Our analysis includes the impact of spatial resolution on hotspot identification, temporal effects in crime spatial patterns, and relationships between various crime categories. In this work, crime prediction is viewed as a classification problem. When predictions for a particular category are made, a binary classification-based model is framed, and when all categories are considered for analysis, a multiclass model is formulated. The proposed crime-prediction model (HotBlock) utilizes spatiotemporal analysis for predicting crime in a fixed spatial region over a period of time. It is robust under variation of model parameters. HotBlock's results are compared with baseline real-world crime datasets. It is found that the proposed model outperforms the standard DeepCrime model in most cases.

Crime amount prediction based on 2D convolution and long short-term memory neural network

  • Dong, Qifen;Ye, Ruihui;Li, Guojun
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.208-219
    • /
    • 2022
  • Crime amount prediction is crucial for optimizing the police patrols' arrangement in each region of a city. First, we analyzed spatiotemporal correlations of the crime data and the relationships between crime and related auxiliary data, including points-of-interest (POI), public service complaints, and demographics. Then, we proposed a crime amount prediction model based on 2D convolution and long short-term memory neural network (2DCONV-LSTM). The proposed model captures the spatiotemporal correlations in the crime data, and the crime-related auxiliary data are used to enhance the regional spatial features. Extensive experiments on real-world datasets are conducted. Results demonstrated that capturing both temporal and spatial correlations in crime data and using auxiliary data to extract regional spatial features improve the prediction performance. In the best case scenario, the proposed model reduces the prediction error by at least 17.8% and 8.2% compared with support vector regression (SVR) and LSTM, respectively. Moreover, excessive auxiliary data reduce model performance because of the presence of redundant information.

Control of International Cyber Crime

  • Park, Jong-Ryeol;Noe, Sang-Ouk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • The followings are required to establish uniform principle of criminal jurisdiction for international cyber crime into customary international law; (1) clear guideline of UN for promoting national practice (2) formation of general practices based on these guidelines (3) these general practices should obtain legal confidence. International society is in close cooperation for investigating and controlling cyber threat. The US FBI has closed down the largest online crime space called 'Darkcode' and prosecuted related hackers based on joint investigation with 19 countries including England, Australia, Canada, Bosnia, Croatia, Israel, and Rumania. More and more people in Korea are raising their voices for joining cyber crime treaty, 'Budapest Treaty.' Budapest Treaty is the first international treaty prosecuting cyber crime by setting out detailed regulations on internet criminal act. Member countries have installed hotline for cyber crime and they act together. Except European countries, America, Canada, and Japan have joined the treaty. In case of Korea, from few years before, it is reviewing joining with Ministry of Foreign affairs, Ministry of Justice and the National Police but haven't made any conclusion. Different from offline crime, cyber crime is planned in advance and happens regardless of border. Therefore, international cooperation based on position of punishing criminals and international standards. Joining of Budapest international cyber crime treaty shall be done as soon as possible for enhancing national competence.

Development of GIS-based Regional Crime Prevention Index to Support Crime Prevention Activities in Urban Environments

  • Seok, Sang-Muk;Kwon, Hoe-Yun;Song, Ki-Sung;Lee, Ha-Kyung;Hwang, Jung-Rae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 2017
  • In this study, we proposed GIS-based Regional Crime Prevention Index (RCPI) development method designed to support local governments with systematic crime prevention activities. The public interest in safe urban environment is increasing rapidly. The government is putting efforts into crime prevention activities to eliminate the criminal opportunities in advance. CPTED is method to prevent crimes in the city by improving environmental factors that cause crime. It is used by local governments to promote the crime prevention activities centering on the expansion of CCTVs and street lamps and the improvement of street environment. However, most policies were terminated as one-off programs and it is necessary to monitor the effect of such policies on a continuous basis. In order to alleviate issues, this study proposed RCPI as part of crime safety assessment in urban environments. The estimation of RCPI in City A of Gyeonggi-do showed relative differences in 31 districts (dong), indicating that it is also possible to evaluate the crime safety in the local community on the level of the administrative dong, the smallest administrative district in the urban environments. As a crime map, the RCPI will be used effectively as he reference to support the decision making process for local government in the future.

Artificial-Neural-Network-based Night Crime Prediction Model Considering Environmental Factors

  • Lee, Juwon;Jeong, Yongwook;Jung, Sungwon
    • Architectural research
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • As the occurrence of a crime is dependent on different factors, their correlations are beyond the ordinary cognitive range. Owing to this limitation, systems face difficulty in correlating various factors, thereby requiring the assistance of artificial intelligence (AI) to overcome such limitations. Therefore, AI has become indispensable for crime prediction. Crimes can cause severe and irrevocable damage to a society. Recently, big data has been introduced for developing highly accurate models for crime prediction. Prediction of night crimes should be given significant consideration, because crimes primarily occur during nights, when the spatiotemporal characteristics become vulnerable to crimes. Many environmental factors that influence crime rate are applied for crime prediction, and their influence on crime rate may differ based on temporal characteristics and the nature of crime. This study aims to identify the environmental factors that influence sex and theft crimes occurring at night and proposes an artificial neural network (ANN) model to predict sex and theft crimes at night in random areas. The crime data of A district in Seoul for 12 years (2004-2015) was used, and environmental factors that influence sex and theft crimes were derived through multiple regression analysis. Two types of crime prediction models were developed: Type A using all environmental factors as input data; Type B with only the significant factors (obtained from regression analysis) as input data. The Type B model exhibited a greater accuracy than Type A, by 3.26 and 9.47 % higher for theft and sex crimes, respectively.

Classification Model of Types of Crime based on Random-Forest Algorithms and Monitoring Interface Design Factors for Real-time Crime Prediction (실시간 범죄 예측을 위한 랜덤포레스트 알고리즘 기반의 범죄 유형 분류모델 및 모니터링 인터페이스 디자인 요소 제안)

  • Park, Joonyoung;Chae, Myungsu;Jung, Sungkwan
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.9
    • /
    • pp.455-460
    • /
    • 2016
  • Recently, with more severe types felonies such as robbery and sexual violence, the importance of crime prediction and prevention is emphasized. For accurate and prompt crime prediction and prevention, both a classification model of crime with high accuracy based on past criminal records and well-designed system interface are required. However previous studies on the analysis of crime factors have limitations in terms of accuracy due to the difficulty of data preprocessing. In addition, existing crime monitoring systems merely offer a vast amount of crime analysis results, thereby they fail to provide users with functions for more effective monitoring. In this paper, we propose a classification model for types of crime based on random-forest algorithms and system design factors for real-time crime prediction. From our experiments, we proved that our proposed classification model is superior to others that only use criminal records in terms of accuracy. Through the analysis of existing crime monitoring systems, we also designed and developed a system for real-time crime monitoring.