References
- Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, 22(5), 717-727. doi:10.1016/s0731-7085(99)00272-1.
- Angel, S. (1968). Discouraging crime through city planning Berkeley (p. 75). Center for Planning and Development Research.
- Bae, W., Kim, H., & Kwon, K. (2009). A study on the characteristics of violent theft crimes by land use and by block: focusing on Bundang New Town in 2006. Journal of the Urban Design Institute of Korea, 10(4), 5-20.
- Baek, Y., Kim, K., & Park, H. (2018). Effects of communication campaign on the perception of public safety: comparing public perceptions before and after setting up signs of CCTV. Journal of Police Policies, 32(2), 181-218. https://doi.org/10.35147/knpsi.2018.32.2.181
- Baek, Y., Kim, K., & Park, H. (2018). Effects of CCTV presence and security perception on residents' perceived safety. Journal of Police Science, 18(3), 9-38. https://doi.org/10.22816/POLSCI.2018.18.3.001
- Brantingham, P., & Brantingham, P. (1995). Criminality of place. European Journal on Criminal Policy and Research, 3(3), 5-26. doi:10.1007/BF02242925.
- Chitsazan, M., & Rahmani, G. (2013). Groundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south west Iran. Journal of Geopersia, 3(1), 35-46.
- Eck, J., & Weisburd, D.L. (2015). Crime places in crime theory. Crime and place: Crime Prevention Studies, 4.
- Fahlman, S., & Lebiere, C. (1990). The cascade-correlation learning architecture. Advances in Neural Information Precessing Systems, 2, 524-523.
- Farrington, D. P., & Welsh, B. C. (2002). Improved street lighting and crime prevention. Justice Quarterly, 19(2), 313-342. doi:10.1080/07418820200095261.
- Felson, M., & Poulsen, E. (2003). Simple indicators of crime by time of day. International Journal of Forecasting, 19(4), 551-555. https://doi.org/10.1016/S0169-2070(03)00089-X
- Glaeser, E.L., & Sacerdote, B. (2000). The social consequences of housing. Journal of Housing Economics, 9(1-2), 1-23. doi:10.1006/jhec.2000.0262.
- Security lighting system management rules in Dongjak-gu (Year). Article title. https://www.elis.go.kr Accessed 22 April 2021.
- Hong, J., Lim, H., Ham, Y., & Lee, B. (2015). Grid unit-based analysis of climate change-driven disaster vulnerability in urban area. Journal of Korea Spatial Information Society, 23(6), 67-75. https://doi.org/10.12672/ksis.2015.23.6.067
- Huang, W.S., Kwag, M., & Streib, G. (1998). Exploring the relationship between hotel characteristics and crime. Hospitality Review, 16(1), 9.
- Huang, W., & Foo, S. (2002). Neural network modeling of salinity variation in Apalachicola River. Water Research, 36(1), 356-362. doi:10.1016/s0043-1354(01)00195-6.
- Jonathan, J., Ian, D., & Andrew, W. (2003), 19(4). Predicting the geo-temporal variations of crime and disorder. International Journal of Forecasting, 19(4), 623-634. https://doi.org/10.1016/S0169-2070(03)00095-5
- Kang, S., Park, J., & Lee, K. (2009). Efficacy analysis for residential area crime prevention CCTV using a public opinion survey. Journal of the Architectural Institute of Korea, 25(4), 235-244.
- Kang, Y., & Cho, J. (2010). A study on burglary prevention measures based on criminal behavior analysis. Journal of Police Science, 10(1), 185-212. https://doi.org/10.22816/POLSCI.2010.10.1.008
- Kate, P. (1996). The influence of street lighting improvements on crime, fear and pedestrian street use, after dark. Streets Ahead, 35(2-3), 193-201.
- Kim, D., & Park, J. (2010). A selection of artificial surveillance zone through the spatial features analysis of crime occurrence place. Journal of Korea Spatial Information Society, 18(3), 83-90.
- Kim, J. Y., & Jung, S. (2011). Geographical profiling of serial rapes in Korea. The Korean Journal of Public Safety and Criminal Justice, 20(2), 37-58.
- Kim, K., & Lee, H. (2014). Crime patterns in the Seoul Capital Area. Hwankyung Nongchon, 53, 102-104.
- Kinney, J.B., Brantingham, P.L., Wuschke, K., Kirk, M.G., & Brantingham, P.J. (2008). Crime attractors, generators and detractors: Land use and urban crime opportunities. Built Environment, 34(1), 62-74. doi:10.2148/benv.34.1.62.
- Lang, K., & Wotbrock, M. Learning to tell two spirals apart. In Proceedings of the 1988 connectionist models summer school (No. 1989, pp. 52-59).
- Lee, G.J., Kim, Y.J., & Hong, S.J. (2015). An empirical study on exploration of spatial association between crime and land use. Journal of the Korean Urban Management Association, 28(4), 245-267.
- Lee, H., & Kim, K. (2013). Crime patterns in the metropolitan area: Discovery of spatial autocorrelation. Korean Journal of Public Safety and Criminal Justice, 53, 218-245.
- Lee, J., Hong, C., Woo, J., & Koo, J. (2001). A study on the application of the digital land-use map for land use state analysis in Jeonbuk region. Journal of Korea Spatial Information Society, 3(2), 63-70.
- Lee, M., Kim, J., & Seok, H. (2007). Context deduction between spatial characteristics and burglaries in residential areas based on space analysis methods. Journal of the Architectural Institute of Korea, 23(11), 141-150.
- Lee, S. (2009). A study on the CPTED strategy to make safety community: With focus on bus stop crime prevention diagnosis cases. Police Science Journal, 11(3), 125-138.
- Lee, S., Jung, S., & Lee, J. (2019). Prediction model based on an artificial neural network for user-based building energy consumption in South Korea. Energies, 12(4), 608. doi:10.3390/en12040608.
- Mahmud, N., Zinnah, K., Rahman, Y., & Ahmed, N. (2016). Crimecast: A crime prediction and strategy direction service. In 2016 19th International Conference on Computer and Information Technology (ICCIT) (pp. 414-418). IEEE.
- McCord, E.S., & Ratcliffe, J.H. (2009). Intensity value analysis and the criminogenic effects of land use features on local crime patterns. Crime Patterns and Analysis, 2(1), 17-30.
- Minsky, M., & Papert, S. (1969). Perceptrons: An essay in computational geometry. Cambridge: MIT Press.
- Newburn, T., & Sparks, R. (2004). Criminal justice and political cultures: national and international dimensions of crime control. New York: Routledge.
- Organization for Economic Co-Operation and Development (2017). How's life? Measuring well-being. http://www.oecdbetterlifeindex.org Accessed22 April 2021.
- Park, C., & Choi, S. (2009). Crime prevention effects of publicity of CCTV installation at Gangnam-gu, Seoul. Korean Journal of Criminology, 9, 213-238.
- Park, D., Kang, I., Choi, H., & Kim, S. (2015). Crime mapping using GIS and crime prevention through environmental design. Journal of the Korean Society for Geospatial Information Science, 23(1), 31-37. https://doi.org/10.7319/kogsis.2015.23.1.031
- Park, J., & Choi, N. (2010). Differentiating types of robbery based on crime-scene behavior analysis. Korean Journal of Public Safety and Criminal Justice, 19(4), 207-235.
- Park, K., Choi, I., Park, S., Koh, C., Kang, Y., Park, H., Lee, K., & Kim, I. (2012). Development of crime risk assessment tool and its application in crime-ridden areas and alternatives [Korean Institute of criminology research series] (pp. 4-582).
- Park, M. (2003). Implementation of a crime prediction map using spatial analysis of GIS. with Seongbuk-gu, Seoul as an example [Master's Thesis]. Kyung Hee University.
- Park, S., & Park, J. (2018). Extraction of crime vulnerable areas using crime statistics and spatial big data. Journal of Convergence for Information Technology, 8(1), 161-171. https://doi.org/10.22156/CS4SMB.2018.8.1.161
- Pearlstein, A., & Wachs, M. (1982). Crime in public transit systems: An environmental design perspective. Transportation, 11(3), 277-297. doi:10.1007/BF00172653.
- Robert, S., & Barbare, A. (1989). The factor structure of street tree attributes. Journal of Arboriculture, 15(10), 243-246.
- Shamsuddin, N., Ali, N., & Alwee, R. (2017). An overview on crime prediction methods. ICT International Student Project conference (ICT-ISPC), 6, 1-5.
- Shin, S., & Cho, K. (2014). Crime statistics in Seoul and plans to promote a safe city. Seoul Institute of Research Policy Report, 161.
- Stucky, T.D., & Ottensmann, J.R. (2009). Land use and violent crime. Criminology, 47(4), 1223-1264. doi:10.1111/j.1745-9125.2009.00174.x.
- Suh, D., & Chang, S. (2014). A heuristic rule-based passive design decision model for reducing heating energy consumption of Korean apartment buildings. Energies, 7(11), 6897-6929. doi:10.3390/en7116897.
- Twinam, T. (2017). Danger zone: Land use and the geography of neighborhood crime. Journal of Urban Economics, 100, 104-119. doi:10.1016/j.jue.2017.05.006.
- Won, S.L. (2009). Articles: A study on the CPTED strategy to make safety community. Korean Association of Police Science Review, 21(0), 125-138.
- Xiaowen, D. Research on Crime in Kindergarten Place. In 2019 International Conference on Advanced Education, Management and Humanities (AEMH 2019) (pp. 170-174). Atlantis Press.
- Yang, B.H. (2006). Understanding multivariate data analysis. Seoul: Communication Books.
- Yang, J.M. (2016). A study on predictive crime analytics based on artificial intelligence and police stop. New Trend of Criminal Law, 51, 210-242.
- Yanqing, X., & Cong, F. (2018). 8ingim. Lawased on artificial intelligence and police stop. Contempducation and Humanities Research 2019tment buildings w. Cities, 79, 45-52. https://doi.org/10.1016/j.cities.2018.02.021