• Title/Summary/Keyword: CREB

Search Result 207, Processing Time 0.029 seconds

Regulation of Phosphorylated cAMP Response Element-Binding Protein, Fos-Related Antigen and FosB Expression by Dopamine Agonists in Rat Striatum

  • Choe, Eun-Sang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.4
    • /
    • pp.299-305
    • /
    • 2001
  • Activation of D1-like dopamine receptors by psychostimulants, such as amphetamine, upregulates the expression of immediate early gene and opioid peptide gene in the striatum. The genomic changes are regulated by phosphorylated transcription factors via complicated intracellular events. To evaluate temporal expression of the transcription factors by dopaminergic stimulation, the D1-like dopamine agonist, amphetamine or SKF82958, was systematically delivered. As intracellular markers in response to the agonist, phosphorylated cAMP response element-binding protein (pCREB), Fos-related antigens (FRA) and FosB immunoreactivity (IR) was compared at 20 and 120 min time points in the selected areas of the striatum. Semi-quantitative immunocytochemistry showed that amphetamine (5 mg/kg, i.p.) significantly increased pCREB-IR at 20 min, sustained up to 60 min and decreased at 120 min after the infusion. Like amphetamine, the full D1 agonist, SKF82958 (0.5 mg/kg, s.c.), also increased pCREB-IR at 20 min, but not at 120 min after the infusion in the dorsal striatum (caudoputaman, CPu) and shell of ventral striatum (nucleus accumbens, NAc). In contrast, FRA- and FosB-IR induced by SKF82958 was significantly increased at 120 min, but not at 20 min after the administration. These data indicate that SKF82958 mimics induction of CREB phosphorylation by amphetamine and differentially regulates temporal induction of pCREB, and FRA and FosB expression in the striatum.

  • PDF

Anti-melanogenic property of ginsenoside Rf from Panax ginseng via inhibition of CREB/MITF pathway in melanocytes and ex vivo human skin

  • Lee, Ha-Ri;Jung, Joon Min;Seo, Ji-Yeon;Chang, Sung Eun;Song, Youngsup
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.555-564
    • /
    • 2021
  • Background: Ginsenosides of Panax ginseng are used to enhance skin health and beauty. The present study aimed to investigate the potential use of ginsenoside Rf (Rf) from Panax ginseng as a new anti-pigmentation agent. Methods: The anti-melanogenic effects of Rf were explored. The transcriptional activity of the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the expression levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related proteins (Tyrps) were evaluated in melanocytes and UV-irradiated ex vivo human skin. Results: Rf significantly inhibited Forskolin (FSK) or UV-stimulated melanogenesis. Consistently, cellular tyrosinase activity and levels of MITF, tyrosinase, and Tyrps were downregulated. Furthermore, Rf suppressed MITF promoter activity, which was stimulated by FSK or CREB-regulated transcription coactivator 3 (CRTC3) overexpression. Increased CREB phosphorylation and protein kinase A (PKA) activity induced by FSK were also mitigated in the presence of Rf. Conclusion: Rf can be used as a reliable anti-pigmentation agent, which has a scientifically confirmed and reproducible action mechanism, via inhibition of CREB/MITF pathway.

Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca+-CAMK2A- CREB1 pathway

  • Hyosun, Park;Sungsin, Jo;Mi-Ae, Jang;Sung Hoon, Choi;Tae-Hwan, Kim
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.627-632
    • /
    • 2022
  • Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts.

Effects of Acupuncture and Electroacupuncture on the Doublecortin, PSA-NCAM and pCREB Expression in the Brain of Spontaneously Hypertensive Rats (침(鍼) 및 전침(電鍼)이 SHR 대뇌(大腦)에서 Doublecortin, PSA-NCAM, pCREB 양성 신경세포에 미치는 영향)

  • Park, Jung-hwan;Lee, Jae-dong;Kim, Chang-hwan
    • Journal of Acupuncture Research
    • /
    • v.21 no.3
    • /
    • pp.61-81
    • /
    • 2004
  • Background and Objective : The aim of this study was to investigate the effects of acupuncture and electroacupuncture on the DCX, PSA-NCAM, and pCREB expression in the brain of spontaneously hypertensive rats(SHR). Materials and Methods : SHR were divided into five groups: control group, acupuncture group, 2Hz electroacupuncture(EA) group and 100Hz EA group. We evaluated the changes of the DCX, PSA-NCAM, and pCREB positive cells using immunohistochemical method. In the olfactory bulb, we investigate the optical densities of the immunoactive cells. In the dentate gyrus and the piriform cortex, we count the immunoactive cells under the $100{\times}$ visual field optical microscope. Results : 1. The optical densities of DCX-positive cells in the subependymal zone were significantly decreased in all groups, compared to the control group. 2. The counts of DCX-positive cells in the dentate gyrus were significantly increased in all groups, compared to the control group. The counts of DCX-positive cells in the piriform cortex were significantly increased in the acupuncture and 100Hz EA group, compared to the control group. 3. The optical densities of PSA-NCAM-positive cells in the subependymal zone were significantly decreased in the acupuncture and 2Hz EA group, compared to the control group. 4. The counts of PSA-NCAM-positive cells in the dentate gyrus and the piriform cortex were significantly increased in all group, compared to the control group. 5. The counts of pCREB-positive cells in the dentate gyrus were significantly increased in all groups, compared to the control group. The counts of pCREB-positive cells in the piriform cortex were significantly increased in the acupuncture and 100Hz EA group, compared to the control group. Conclusion : We conclude that acupuncture and EA may affect neuronal cell proliferation, differentiation and plasticity in the brain.

  • PDF

Effect of Steroid Hormones on the Expression of c-Fos, CREB, ATF, and HSP70 in Rat Uterus (흰쥐 자궁에서 스테로이드호르몬에 의한 c-Fos, CREB, ATF 및 HSP70의 발현에 관한 연구)

  • Lee, Young-Ki;Kim, Sung-Rye
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.3
    • /
    • pp.305-313
    • /
    • 1998
  • Steroid hormone is known to cause the dynamic changes of mammalian uterus during reproductive cycle. However there is little information about the effect of estrogen (E) and progesterone (P) on the expression of various transcription factors involved in gene expression. Thus the present study was designed to demonstrate E and/or P-induced expression of c-Fos, CREB, ATF and HSP70 in rat uterus. Rats, ovariectomized (OVX) for two weeks, were divided into 6 experimental groups, 1) OVX, 2) OVX+V, 3) OVX+E, 4) OVX+P, 5) OVX+E+V, 6) OVX+E+P, and western blotting assay for nuclear extract and immunohistochemical staining were carried out for each experimental group. Treatment of E $(10{\mu}g)$ showed to increase the expression of c-Fos, CREB, ATF, and HSP70, and maximal expression was occured at $3\sim6$ hr after E administration. P (1mg) also increased, but much less than E, the expression of c-Fos, ATF, and HSP70. However, P did not reveal any effect on the expression CREE. P treatment 4 hr after E injection decreased c-Fos, CREB, and ATF expression, but did not show any change in the E-induced HSP70 expression. In immunohistochemical study c-Fos-, CREB-, and ATF-immunoreactivities were confined to the cells of luminal epithelium of uterine endometrium. These results suggest that proliferation and differentiation of rat uterus during reproductive cycle may mediated via expression of transcription factors, such as c-Fos, CREB, ATF, and HSP70.

  • PDF

cAMP-response Element-binding Protein Is not Essential for Osteoclastogenesis Induced by Receptor Activator of NF-${\kappa}B$ Ligand

  • Kim, Ha-Neui;Ha, Hyun-Il;Lee, Jong-Ho;Kwak, Han-Bok;Kim, Hong-Hee;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • v.30 no.4
    • /
    • pp.143-148
    • /
    • 2005
  • Osteoclasts are multinucleated cells with bone resorbing activity and differentiated from hematopoietic cell lineages of monocyte/macrophages in the presence of receptor activator of NF-${\kappa}B$ ligand (RANKL) and M-CSF. However, the exact molecular mechanisms through which RANKL stimulates osteoclastogenesis remain to be elucidated. Here we report that activation of cAMP-response elementbinding protein (CREB) is not involved in osteoclastogenesis from osteoclast precursors in response to RANKL. RANKL induced CREB activation in osteoclast precursors. Using pharmacological inhibitors, we found that RANKL-induced CREB activation is dependent on p38 MAPK pathways. We also found that ectopic expressions of wild type and dominant negative forms of CREB in osteoclast precursors did not affect RANKL-induced osteoclast formation and bone resorbing activity. Furthermore, dominant negative forms of CREB did not alter the expression levels of osteoclast-specific marker genes. Taken together, these data suggest that CREB is dispensable for differentiation and resorbing activity of osteoclasts.

Involvement of pCREB Expression in Inhibitory Effects of Coptis japonica on Morphine-induced Psychological Dependence

  • Kwon, Seung-Hwan;Ha, Ri-Ra;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Morphine is a potent analgesic with significant abuse potential, because of drug craving and psychological dependence. It is reported that repeated treatment of morphine can produce conditioned place preference (CPP) showing a reinforcing effect in mice. Previously, we have reported the inhibitory effect of the methanolic extract of Coptis japonica (MCJ) on morphine-induced CPP in mice. The present study was employed whether p-CREB expression is involved in the inhibitory effect of MCJ on the morphine-induced CPP in the mouse hippocampus. Repeated administration of MCJ 100 mg/kg inhibited morphine-induced CPP. Expression of p-CREB was increased in the dentate gyrus of the hippocampus that had undergone morphineinduced CPP. This increase of expression was significantly inhibited by administration of MCJ 100 mg/kg, compared to the morphine control group. Taken together, these results suggest that MCJ inhibits morphine-induced CPP through the regulation of p-CREB expression in the mouse dentate gyrus of the hippocampus.

Memory-improving effect of formulation-MSS by activation of hippocampal MAPK/ERK signaling pathway in rats

  • Kim, Sang-Won;Ha, Na-Young;Kim, Kyung-In;Park, Jin-Kyu;Lee, Yong-Heun
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.242-247
    • /
    • 2008
  • MSS, a comprising mixture of maesil (Prunus mume Sieb. et Zucc) concentrate, disodium succinate and Span80 (3.6 : 4.6 : 1 ratio) showed a significant improvement of memory when daily administered (460 mg/kg day, p.o.) into the normal rats for 3 weeks. During the spatial learning of 4 days in Morris water maze test, both working memory and short-term working memory index were significantly increased when compared to untreated controls. We investigated a molecular signal transduction mechanism of MSS on the behaviors of spatial learning and memory. MSS treatment increased hippocampal mRNA levels of NR2B and TrkB without changes of NR1, NR2A, ERK1, ERK2 and CREB. However, the protein levels of pERK/ERK and pCREB/CREB were all significantly increased to $1.5{\pm}0.17$ times. These results suggest that the improving effect of spatial memory for MSS is linked to MAPK/ERK signaling pathway that ends up in the phosphorylation of CREB through TrkB and/or NR2B of NMDA receptor.

Effect of Rehmannia glutinosa on Phosphorylation of ERK and CREB in Acute Cocaine-treated Rats (건지황의 급성코카인 투여에 의한 ERK, CREB 인산화에 미치는 효과)

  • Kwon, Ki-Won;Jang, Eun-Young;Im, Chae-Kwang;Yang, Chae-Ha;Kim, Kwang-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.281-286
    • /
    • 2012
  • The present study was designed to investigate the effect of Rehmannia glutinosa on phosphorylation of extracellular signal-regulated kinase(ERK) and cAMP response element-binding protein(CREB) in the acute cocaine-treated rats. Rats orally received vehicle or extract of Rehmannia glutinosa 1 h prior to saline (1 ml/kg, i.p.) or cocaine hydrochloride (20 mg/kg, i.p.) treatment. Rats were sacrificed 15 min after a single intraperitoneal injection of saline or cocaine. Rehmannia glutinosa at dose of 50 mg/kg significantly decreased phosphorylation of ERK, CREB and Elk-1 in the nucleus accumbens and striatum of the cocaine-treated rat brain by immunocytochemistry. These results suggest that Rehmannia glutinosa may contribute to the effects of cocaine on gene expression and on behaviors.

Lactosylceramide α2,3-Sialyltransferase Is Induced Via a PKC/ERK/CREB-dependent Pathway in K562 Human Leukemia Cells

  • Choi, Hee-Jung;Park, Young-Guk;Kim, Cheorl-Ho
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.138-144
    • /
    • 2007
  • Previously we showed that the human GM3 synthase gene was expressed during the induction of megakaryocytic differentiation in human leukemia K562 cells by phorbol 12-myristate 13-acetate (PMA). In this study we found that treatment of PMA-induced K562 cells with $G{\ddot{o}}6976$, a specific inhibitor of PKC, and U0126, an inhibitor of the extracellular signal-regulated kinase (ERK) reduced expression of GM3 synthase, whereas wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K) did not. Moreover, activation of ERK and cAMP response element binding protein (CREB) was prevented by pretreatment with $G{\ddot{o}}6976$ and U0126. PMA stimulated the promoter activity of the 5'-flanking region from -177 to -83 region of the GM3 synthase gene, and mutation or deletion of a CREB site located around -143 of the promoter reduced PMA-stimulated promoter activity, as did the inhibitors $G{\ddot{o}}6976$ and U0126. Our results demonstrate that induction of GM3 synthase during megakaryocytic differentiation in PMA-stimulated human leukemia K562 cells depends upon the PKC/ERK/CREB pathway.