• Title/Summary/Keyword: COG (Clusters of Orthologous Groups of protein)

Search Result 10, Processing Time 0.02 seconds

COG 알고리즘으로 파악한 Proteobacteria의 보존적 유전자

  • Lee, Dong-Geun;Lee, Jin-Ok;Lee, Jae-Hwa
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.715-718
    • /
    • 2003
  • A COG (clusters of orthologous groups of proteins) algorithm, protein similarities among genomes, was used to detect conserved genes and to figure out their relationships within 42 procaryote, 33 Bacteria and 16 Proteobacteria All analyzed procaryotes shared 75 COGs. COG0195, COG0358 and COG0528 were only represented by the 42 procaryotes. Sixty-four COGs were added as conserved genes in 33 eubacteria. Each Proteobacteria group has a unique repertoire of COGs. Metabolic COGs were more diverse in the beta-Proteobacteria group than in the other groups. The possibilities of detecting new biological molecules is high in phylogenetically related organisms, hence the identification of useful proteins by using this algorithm is possible.

  • PDF

Phylogenetic Analysis of 680 Prokaryotes by Gene Content (유전자 보유 계통수를 이용한 원핵생물 680종의 분석)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.711-720
    • /
    • 2016
  • To determine the degree of common genes and the phylogenetic relationships among genome-sequenced 680 prokaryotes, the similarities among 4,631 clusters of orthologous groups of protein (COGs)’ presence/ absence and gene content trees were analyzed. The number of COGs was in the range of 103–2,199 (mean 1377.1) among 680 prokaryotes. Candidatus Nasuia deltocephalinicola str. NAS-ALF, an obligate symbiont with insects, showed the minimum COG, while Pseudomonas aeruginosa PAO1, an opportunistic pathogen, represented the maximum COG. The similarities between two prokaryotes were 49.30–99.78 % (mean 72.65%). Methanocaldococcus jannaschii DSM 2661 (hyperthermophilic and autotrophic, Euryarchaeota phylum) and Mesorhizobium loti MAFF303099 (mesophilic and symbiotic, alpha-Proteobacteria class) had the minimum amount of similarities. As gene content may represent the potential for an organism to adapt to each habitat, this may represent the history of prokaryotic evolution or the range of prokaryotic habitats at present on earth. COG content trees represented the following. First, two members of Chloroflexi phylum (Dehalogenimonas lykanthroporepellens BL-DC-9 and Dehalococcoides mccartyi 195) showed a greater relationship with Archaea than other Eubacteria. Second, members of the same phylum or class in the 16S rRNA gene were separated in the COG content tree. Finally, delta- and epsilon-Proteobacteria were in different lineages with other Proteobacteria classes in neighbor-joining (NJ) and maximum likelihood (ML) trees. The results of this study would be valuable to identifying the origins of organisms, functional relationships, and useful genes.

Conservative Genes of Less Orthologous Prokaryotes (Orthologs 수가 적은 원핵생물들의 보존적 유전자)

  • Lee, Dong-Geun
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.694-701
    • /
    • 2017
  • Mycoplasma genitalium represents the smallest genome among mono-cultivable prokaryotes. To discover and compare the orthologs (conservative genes) among M. genitalium and 14 prokaryotes that are uncultivable and have less orthologs than M. genitalium, COG (clusters of orthologous groups of protein) analyses were applied. The analyzed prokaryotes were M. genitalium, one hyperthermophilic exosymbiotic archaeon Nanoarchaeum equitans, four intracellular plant pathogenic eubacteria of Candidatus Phytoplasma genus, and nine endosymbiotic eubacteria of phloem- and xylem-feeding insects. Among 367 orthologs of M. genitalium, 284 orthologs were conservative between M. genitalium and at least one other prokaryote. All 15 prokaryotes commonly have 29 orthologs, representing the significance of proteins in life. They belong to 25 translation-related, including 22 ribosomal proteins, 3 subunits of RNA polymerase, and 1 protein-folding-related. Among the 15 prokaryotes, 40 orthologs were only found in all four Candidatus Phytoplasma. The other nine Candidatus, all endosymbionts with insects, showed only a single common COG0539 (ribosomal protein S1), representing the diversity of orthologs among them. These results might provide clues to understand conservative genes in uncultivable prokaryotes, and may be helpful in industrial areas, such as handling prokaryotes producing amino acids and antibiotics, and as precursors of organic synthesis.

Investigation of Conservative Genes in 168 Archaebacterial Strains (168개 고세균 균주들의 보존적 유전자에 관한 연구)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.813-818
    • /
    • 2020
  • The archaeal clusters of orthologous genes (arCOG) algorithm, which identifies common genes among archaebacterial genomes, was used to identify conservative genes among 168 archaebacterial strains. The numbers of conserved orthologs were 14, 10, 9, and 8 arCOGs in 168, 167, 166, and 165 strains, respectively. Among 41 conserved arCOGs, 13 were related to function J (translation, ribosomal structure, and biogenesis), and 10 were related to function L (replication, recombination, and repair). Among the 14 conserved arCOGs in all 168 strains, 6 arCOGs of tRNA synthetase comprised the highest proportion. Of the remaining 8 arCOGs, 2 are involved in reactions with ribosomes, 2 for tRNA synthesis, 2 for DNA replication, and 2 for transcription. These results showed the importance of protein expression in archaea. For the classes or orders having 3 or more members, genomic analysis was performed by averaging the distance values of the conservative arCOGs. Classes Archaeoglobi and Thermoplasmata of the phylum Euryarchaeota showed the lowest and the highest average of distance value, respectively. This study can provides data necessary for basic scientific research and the development of antibacterial agents and tumor control.

Conserved COG Pathways and Genes of 122 Species of Archaea (고세균 122종의 보존적 COG pathways와 유전자)

  • Dong-Geun Lee ;Sang-Hyeon Lee
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.944-949
    • /
    • 2023
  • The purpose of this study was to identify conserved metabolic pathways and conserved genes in 122 archaeal species. Using the Clusters of Orthologous Groups of Proteins (COG) database of conserved genes, we analyzed whether 122 species had 63 COG metabolic pathways, the 822 COGs that compose them, and a total of 4,877 COGs. Archaeal ribosomal proteins were the most conserved in metabolic pathways. 46 COGs in seven COG pathways among 63 COG pathways and 20 COGs in others were conserved in 122 species. Some genes involved in cell wall and extracellular matrix synthesis, replication, transcription, translation, and protein metabolism were common to all 122 species. When the distance value of the phylogenetic tree was analyzed at the phylum level or class level, the average was the lowest at the class Halobacteria of the phylum Euryarchaeota. Standard deviation was high for the class Nitosospharia of the phylum Thaumarchaeota, the unclassified members of phylum Thaumarchaeota, the class Halobacteria of the phylum Euryarchaeota, the class Thermoprotei of the phylum Crenarchaeota, and other archaea. Furthermore, the phylogenetic tree analysis revealed six commonalities. The results of this study, along with data on conserved genes, could be used for drug development and gene selection for strain improvement.

Metabolic Pathways of 1309 Prokaryotic Species in Relation to COGs (COG pathways에서 원핵생물 1,309종의 대사경로)

  • Lee, Dong-Geun;Kim, Ju-Hui;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.249-255
    • /
    • 2022
  • Metabolism is essential for survival and reproduction, and there is a metabolic pathways entry in the clusters of orthologous groups of proteins (COGs) database, updated in 2020. In this study, the metabolic pathways of 1309 prokaryotes were analyzed using COGs. There were 822 COGs associated with 63 metabolic pathways, and the mean for each taxon was between 200.50 (mollicutes) and 527.07 (cyanobacteria) COGs. The metabolic pathway composition ratio (MPCR) was defined as the number of COGs present in one genome in relation to the total number of COGs constituting each metabolic pathway, and the number of pathways with 100% MPCR ranged from 0 to 26 in each prokaryote. Among 1309 species, the 100% MPCR pathways included murein biosynthesis associated with cell wall synthesis (922 species); glycine cleavage (918); and ribosomal 30S subunit synthesis (903). The metabolic pathways with 0% MPCR were those involving photosystem I (1263 species); archaea/vacuolar-type ATP synthase (1028); and Na+-translocation NADH dehydrogenase (976). Depending on the prokaryote, three to 49 metabolic pathways could not be performed at all. The sequence of most highly conserved metabolic pathways was ribosome 30S subunit synthesis (96.1% of 1309 species); murein biosynthesis (86.8%); arginine biosynthesis (80.4%); serine biosynthesis (80.3%); and aminoacyl-tRNA synthesis (82.2%). Protein and cell wall synthesis have been shown to be important metabolic pathways in prokaryotes, and the results of this study of COGs related to such pathways can be utilized in, for example, the development of antibiotics and artificial cells.

Analysis of Conservative Genes in Thermophilic and Hyperthermophilic Bacteria (고온성과 초고온성 세균의 보존적 유전자 분석)

  • Lee Dong-Geun;Lee Jae-Hwa;Ha Bae Jin;Ha Jong-Myung;Lee Jung-Hyun;Kim Sang-Jin;Lee Sang Hyeon
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.387-391
    • /
    • 2005
  • Totally 16,299 conservative genes, commonly found in 13 thermophilic and hyperthermophilic bacteria, were analyzed. All genes were belong to W 67 COGs (clusters of orthologous groups of proteins). COGs related to protein metabolism were 80 among 167 COGs. Conservative genes were not limited only thermophiles and hyperthermophiles, meaning thermal stability is independent of specific protein. However reverse gyrase was only found in all hyperthermophilic archaebacteria and eubacteria, meaning DNA stability is important in hyperthermophiles. Hyperthermophilic eubacteria and thermophilic archaebacteria had different position between phylogenetic tree of gene content and 165 rRNA gene. Thermophilic archaebacteria hyperthermophilic eubacteria and archaebacteria had similar values by the statistical analysis of distance values with 167 COGs in each organism.

Web-Based Computational System for Protein-Protein Interaction Inference

  • Kim, Ki-Bong
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.459-470
    • /
    • 2012
  • Recently, high-throughput technologies such as the two-hybrid system, protein chip, Mass Spectrometry, and the phage display have furnished a lot of data on protein-protein interactions (PPIs), but the data has not been accurate so far and the quantity has also been limited. In this respect, computational techniques for the prediction and validation of PPIs have been developed. However, existing computational methods do not take into account the fact that a PPI is actually originated from the interactions of domains that each protein contains. So, in this work, the information on domain modules of individual proteins has been employed in order to find out the protein interaction relationship. The system developed here, WASPI (Web-based Assistant System for Protein-protein interaction Inference), has been implemented to provide many functional insights into the protein interactions and their domains. To achieve those objectives, several preprocessing steps have been taken. First, the domain module information of interacting proteins was extracted by taking advantage of the InterPro database, which includes protein families, domains, and functional sites. The InterProScan program was used in this preprocess. Second, the homology comparison with the GO (Gene Ontology) and COG (Clusters of Orthologous Groups) with an E-value of $10^{-5}$, $10^{-3}$ respectively, was employed to obtain the information on the function and annotation of each interacting protein of a secondary PPI database in the WASPI. The BLAST program was utilized for the homology comparison.

Investigation of Conserved Genes in Microorganism (미생물의 보존적 유전자 탐색)

  • Lee Dong-Geun;Lee Jae-Hwa;Lee Sang-Hyeon;Ha Bae-Jin;Shim Doo-Hee;Park Eun-Kyung;Kim Jin-Wook;Li Hua-Yue;Nam Chun-Suk;Kim Nam Young;Lee Eo-Jin;Back Jin-Wook;Ha Jong-Myung
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.261-266
    • /
    • 2005
  • To figure out conserved genes in 66 microbial species and measuring the degree of conservation, analyses based on COG (Clusters of Orthologous Groups of proteins) algorithm were applied. Sixty-six microbial genomes, including three eukaryotes, hold 63 conserved orthologs in common. The majority $(82.5\%)$ of the conserved genes was related to translation, meaning the importance of protein in living creatures. Ribosomal protein S12 (COG0048) and L14 (COG0093) were more conserved genes than others from the distance value analysis. Phylogenetically related microbes grouped in genome analysis by average and standard deviation of 63 conserved genes. The 63 conserved genes, found in this research, would be useful in basic research and applied ones such as antibiotic development.

Draft Genome Assembly and Annotation for Cutaneotrichosporon dermatis NICC30027, an Oleaginous Yeast Capable of Simultaneous Glucose and Xylose Assimilation

  • Wang, Laiyou;Guo, Shuxian;Zeng, Bo;Wang, Shanshan;Chen, Yan;Cheng, Shuang;Liu, Bingbing;Wang, Chunyan;Wang, Yu;Meng, Qingshan
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.66-78
    • /
    • 2022
  • The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.