Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.6.694

Conservative Genes of Less Orthologous Prokaryotes  

Lee, Dong-Geun (Major in Pharmaceutical Engineering, Division of Bio-industry, College of Medical and Life Science, Silla University)
Publication Information
Journal of Life Science / v.27, no.6, 2017 , pp. 694-701 More about this Journal
Abstract
Mycoplasma genitalium represents the smallest genome among mono-cultivable prokaryotes. To discover and compare the orthologs (conservative genes) among M. genitalium and 14 prokaryotes that are uncultivable and have less orthologs than M. genitalium, COG (clusters of orthologous groups of protein) analyses were applied. The analyzed prokaryotes were M. genitalium, one hyperthermophilic exosymbiotic archaeon Nanoarchaeum equitans, four intracellular plant pathogenic eubacteria of Candidatus Phytoplasma genus, and nine endosymbiotic eubacteria of phloem- and xylem-feeding insects. Among 367 orthologs of M. genitalium, 284 orthologs were conservative between M. genitalium and at least one other prokaryote. All 15 prokaryotes commonly have 29 orthologs, representing the significance of proteins in life. They belong to 25 translation-related, including 22 ribosomal proteins, 3 subunits of RNA polymerase, and 1 protein-folding-related. Among the 15 prokaryotes, 40 orthologs were only found in all four Candidatus Phytoplasma. The other nine Candidatus, all endosymbionts with insects, showed only a single common COG0539 (ribosomal protein S1), representing the diversity of orthologs among them. These results might provide clues to understand conservative genes in uncultivable prokaryotes, and may be helpful in industrial areas, such as handling prokaryotes producing amino acids and antibiotics, and as precursors of organic synthesis.
Keywords
Candidatus Phytoplasma; conservative gene; COG (cluster of orthologous groups of proteins); Mycoplasma genitalium; orthologs;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Klein-Marcuschamer, D., Santos, C. N., Yu, H. and Stephanopoulos, G. 2009. Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes. Appl. Environ. Microbiol. 75, 2705-2711.   DOI
2 Koressaar, T. and Remm, M. 2012. Characterization of species- specific repeats in 613 prokaryotic species. DNA Res. 19, 219-230.   DOI
3 Lee, D. G. and Lee, S. H. 2015. Investigation of conservative genes in 711 prokaryotes. J. Life Sci. 25, 1007-1013.   DOI
4 Mann, S. and Chen, Y. P. 2010. Bacterial genomic G + C composition-eliciting environmental adaptation (Review). Genomics 95, 7-15.   DOI
5 Merhej, V., Royer-Carenzi, M., Pontarotti, P. and Raoult, D. 2009. Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol. Direct. 10, 13.
6 Nakabachi, A., Ueoka, R., Oshima, K., Teta, R., Mangoni, A., Gurgui, M., Oldham, N. J., van Echten-Deckert, G., Okamura, K., Yamamoto, K., Inoue, H., Ohkuma, M., Hongoh, Y., Miyagishima, S., Hattori, M., Piel, J. and Fukatsu, T. 2013. Defensive bacteriome symbiont with a drastically reduced genome. Curr. Biol. 23, 1478-1484.   DOI
7 Caspi, R., Altman, T., Dreher, K., Fulcher, C. A., Subhraveti, P., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Ong, Q., Paley, S., Pujar, A., Shearer, A. G., Travers, M., Weerasinghe, D., Zhang, P. and Karp, P. D. 2012. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/ genome databases. Nucleic Acids Res. 40, D742-D753.   DOI
8 Firrao, G., Gibb, K. and Streten, C. 2005. Short taxonomic guide to the genus 'Candidatus Phytoplasma'. J. Plant Pathol. 87, 249-263.
9 ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data
10 Galperin, M. Y., Makarova, K. S., Wolf, Y. I. and Koonin, E. V. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261-D269.   DOI
11 Han, K., Li, Z. F., Peng, R., Zhu, L. P., Zhou, T., Wang, L. G., Li, S. G., Zhang, X. B., Hu, W., Wu, Z. H., Qin, N. and Li, Y. Z. 2013. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci. Rep. 3, 2101.   DOI
12 Himmelreich, R., Plagens, H., Hilbert, H., Reiner, B. and Herrmann, R. 1997. Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. Nucleic Acids Res. 25, 701-712.   DOI
13 http://biocyc.org/organism-summary?object=NEQU228908
14 Hutchison III, C. A., Chuang, R. Y., Noskov, V. N., Assad- Garcia, N. and Deerinck, T. J., et al. 2016. Design and synthesis of a minimal bacterial genome. Science 351, aad6253.   DOI
15 Klappenbach, J. A., Dunbar, J. M. and Schmid, T. M. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66, 1328-1333.   DOI
16 Ochman, H. and Davalos, L. M. 2006. The nature and dynamics of bacterial genomes. Science 311, 1730-1733.   DOI
17 Shoji, S., Dambacher, C. M., Shajani, Z., Williamson, J. R. and Schultz, P. G. 2011. Systematic chromosomal deletion of bacterial ribosomal protein genes. J. Mol. Biol. 413, 751-761.   DOI
18 Tautz, D. and Domazet-Loso, T. 2011. The evolutionary origin of orphan genes. Nat. Rev. Genet. 12, 692-702.