Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.9.813

Investigation of Conservative Genes in 168 Archaebacterial Strains  

Lee, Dong-Geun (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
Lee, Sang-Hyeon (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
Publication Information
Journal of Life Science / v.30, no.9, 2020 , pp. 813-818 More about this Journal
Abstract
The archaeal clusters of orthologous genes (arCOG) algorithm, which identifies common genes among archaebacterial genomes, was used to identify conservative genes among 168 archaebacterial strains. The numbers of conserved orthologs were 14, 10, 9, and 8 arCOGs in 168, 167, 166, and 165 strains, respectively. Among 41 conserved arCOGs, 13 were related to function J (translation, ribosomal structure, and biogenesis), and 10 were related to function L (replication, recombination, and repair). Among the 14 conserved arCOGs in all 168 strains, 6 arCOGs of tRNA synthetase comprised the highest proportion. Of the remaining 8 arCOGs, 2 are involved in reactions with ribosomes, 2 for tRNA synthesis, 2 for DNA replication, and 2 for transcription. These results showed the importance of protein expression in archaea. For the classes or orders having 3 or more members, genomic analysis was performed by averaging the distance values of the conservative arCOGs. Classes Archaeoglobi and Thermoplasmata of the phylum Euryarchaeota showed the lowest and the highest average of distance value, respectively. This study can provides data necessary for basic scientific research and the development of antibacterial agents and tumor control.
Keywords
Archaeal genome; arCOG (archaeal cluster of orthologous groups of proteins); conservative gene; ortholog;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kristensen, D. M., Waller, A. S., Yamada, T, Bork, P., Mushegian, A. R. and Koonin, E. V. 2013. Orthologous gene clusters and taxon signature genes for viruses of prokaryotes. J. Bacteriol. 195, 941-950.   DOI
2 Lee, D. G. and Lee, S. H. 2015. Investigation of conservative genes in 711 prokaryotes. J. Life Sci. 25, 1007-1013.   DOI
3 Lee, D. G., Lee, J. H., Lee, S. H., Ha, B. J., Kim, C. M., Shim, D. H., Park, E. K., Kim, J. W., Li, H. Y., Nam, C. S., Kim, N. Y., Lee, E. J., Back, J. W. and Ha, J. M. 2005. Investigation of conserved genes in microorganism. J. Life Sci. 15, 261-266.   DOI
4 Makarova, K. S., Sorokin, A. V., Novichkov, P. S., Wolf, Y. I. and Koonin, E. V. 2007. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol. Direct. 2, 33.   DOI
5 Makarova, K. S., Wolf, Y. I. and Koonin, E. V. 2015. Archaeal clusters of orthologous genes (arCOGs): An update and application for analysis of shared features between Thermococcales, Methanococcales, and Methanobacteriales. Life 5, 818-840.   DOI
6 Reddy, P. J., Ray, S., Sathe, G. J., Gajbhiye, A., Prasad, T. S., Rapole, S., Panda, D. and Srivastava, S. 2015. A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics. J. Proteomics 30, 247-262.
7 Schiffer, S., Rosch, S. and Marchfelder, A. 2002. Assigning a function to a conserved group of proteins: the tRNA 3'-processing enzymes. EMBO J. 21, 2769-2777.   DOI
8 Shajani, Z., Sykes, M. T. and Williamson, J. R. 2011. Assembly of bacterial ribosomes. Ann. Rev. Biochem. 80, 501-526.   DOI
9 Wolf, Y. I., Makarova, K. S., Yutin, N. and Koonin, E. V. 2012. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct. 7, 46.   DOI
10 Zhang, X., Yan, K., Zhang, Y., Li, N., Ma, C., Li, Z., Zhang, Y., Feng, B., Liu, J., Sun, Y., Xu, Y., Lei, J. and Gao, N. 2014. Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly. Nucleic Acids Res. 42, 13430-13439.   DOI
11 Kang, H. Y., Shin, C. J., Kang, B. C., Park, J. H., Shin, D. H., Choi, J. H., Cho, H. G., Cha, J. H., Lee, D. G., Lee, J. H., Park, H. K. and Kim, C. M. 2002. Investigation of conserved gene in microbial genomes using in silico analysis. J. Life Sci. 5, 610-621.
12 de Crecy-Lagard, V., Brochier-Armanet, C., Urbonavicius, J., Fernandez, B., Phillips, G., Lyons, B., Noma, A., Alvarez, S., Droogmans, L., Armengaud, J. and Grosjean, H. 2010. Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea. Mol. Biol. Evol. 27, 2062-2077.   DOI
13 ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG
14 Galperin, M. Y., Kristensen, D. M., Makarova, K. S., Wolf, Y. I. and Koonin, E. V. 2019. Microbial genome analysis: the COG approach. Brief Bioinform. 20, 1063-1070.   DOI
15 Kelch, B. A., Makino, D. L., O'Donnell, M. and Kuriyan, J. 2012. Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol. 10, 34.   DOI
16 Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press
17 Koller-Eichhorn, R., Marquardt, T., Gail, R., Wittinghofer, A., Kostrewa, D., Kutay, U. and Kambach, C. 2007. Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J. Biol. Chem. 282, 19928-19937.   DOI