Browse > Article

Analysis of Conservative Genes in Thermophilic and Hyperthermophilic Bacteria  

Lee Dong-Geun (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Lee Jae-Hwa (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Ha Bae Jin (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Ha Jong-Myung (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Lee Jung-Hyun (Microbiology Laboratory, Korea Ocean Research and Development Institute)
Kim Sang-Jin (Microbiology Laboratory, Korea Ocean Research and Development Institute)
Lee Sang Hyeon (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Publication Information
KSBB Journal / v.20, no.5, 2005 , pp. 387-391 More about this Journal
Abstract
Totally 16,299 conservative genes, commonly found in 13 thermophilic and hyperthermophilic bacteria, were analyzed. All genes were belong to W 67 COGs (clusters of orthologous groups of proteins). COGs related to protein metabolism were 80 among 167 COGs. Conservative genes were not limited only thermophiles and hyperthermophiles, meaning thermal stability is independent of specific protein. However reverse gyrase was only found in all hyperthermophilic archaebacteria and eubacteria, meaning DNA stability is important in hyperthermophiles. Hyperthermophilic eubacteria and thermophilic archaebacteria had different position between phylogenetic tree of gene content and 165 rRNA gene. Thermophilic archaebacteria hyperthermophilic eubacteria and archaebacteria had similar values by the statistical analysis of distance values with 167 COGs in each organism.
Keywords
Thermophiles; hyperthermophiles; 165 rRNA; gene content tree; COG (clusters of orthologous groups of proteins);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stetter, K. O. (1988), Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10, 172-173   DOI
2 Tatusov, R. L., E. V. Koonin, and D. L. Lipman (1997), A genomic perspective on protein families, Science 278, 631-637   DOI   PUBMED   ScienceOn
3 Lee, D.-G., H.-Y. Kang, C.-M. Kim, S.-J. Kim, and J.-H. Lee (2002), Classification of Archaebacteria and Bacteria using a gene content tree approach, Korean J. Biotechnol. Bioeng. 18, 39-44
4 http://www.ncbi.nlm.nih.gov/cog/new
5 ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria
6 Kang, H.-Y., C.-J. Shin, B.-C. Kang, J.-H. Park, D.-H. Shin, J.-H. Choi, H.-G. Cho, J.-H. Cha, D.-G. Lee, J.-H. Lee, H.-K. Park, and C.-M. Kim (2002), Investigation of Conserved Gene in Microbial Genomes using in silico Analysis, Korean J. Life Sci. 5, 610-621
7 Kimura, M. (1983), The neutral theory of molecular evolution, Cambridge University Press. London
8 Jain, R., M. Rivera, and J. A. Lake (1999), Horizontal gene transfer among genomes : The complexity hypothesis, Proc. Natl. Acad. Sri. USA. 96, 3801-3806
9 Ruiz, C., A. Blanco, F. I. J. Pastor, and P. Diaz (2002), Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4 bacterial lipase, FEMS Microbiol. Left. 217, 263-267   DOI   ScienceOn
10 Montague, M. G. and C. A. Hutchison III (2000), Gene content phylogeny of herpesviruses, Proc. Natl. Acad. Sci. USA. 97, 5334-5339
11 http://www.ncbi.nlm.nih.gov
12 Fukuchi, S. and K. Nishikawa (2001), Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria, J. Mol. Biol. 309, 835-843   DOI   ScienceOn
13 Radianingtyas, H. and C. Phillip (2003), Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria, FEMS Microbiol. Rev. 27, 593-616   DOI   ScienceOn
14 Tatusov, R. L., M. Y. Galperin, D. A. Natale, and E. V. Koonin (2000), The COG database,a tool for genome-scale analysis of protein functions and evolution, Nucleic Acids Res. 28, 33-36   DOI   ScienceOn
15 Haki, G. D. and S. K. Rakshit (2003), Developments in industrially important thermostable enzymes: a review, Biores. Technol. 89, 17-34   DOI   ScienceOn
16 Matoba, K., K. Mayanagi, S. Nakasu, A. Kikuchi, and K. Morikawa (2002), Three-dimensional electron microscopy of the reverse gyrase from Sulfolobus tokodaii, Biochem. Bioph. Res. Co. 297, 749-755   DOI   ScienceOn
17 Heath, C., A. C. Jeffries, D. W. Hough, and M. J. Danson (2004), Discovery of the catalytic fimction of a putative 2-oxoacid dehydrogenase multienzyme complex in the thermophilic archaean Thermoplasma acidophilum, FEBS Lett. 577, 523-527   DOI   ScienceOn
18 Woese, C. R. (1987), Bacterial evolution, Microbiol. Rev. 51, 221-271
19 Lee, D.-G., H.-Y. Kang, J.-H. Lee, and C.-M. Kim (2002), Detection of Conserved Genes in Proteobacteria by using a COG Algorithm, Korean J. Biotechnol. Bioeng. 17, 560-565
20 Amann, R., W. Ludwig, and K. H. ScWeifer (1994), Identification of uncultured bacteria: a challenging task for molecular taxonomists. ASM News 60, 360-365