Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.6.711

Phylogenetic Analysis of 680 Prokaryotes by Gene Content  

Lee, Dong-Geun (Pharmaceutical Engineering, Division of Bioindustry, College of Medical and Life Sciences, Silla University)
Lee, Sang-Hyeon (Pharmaceutical Engineering, Division of Bioindustry, College of Medical and Life Sciences, Silla University)
Publication Information
Journal of Life Science / v.26, no.6, 2016 , pp. 711-720 More about this Journal
Abstract
To determine the degree of common genes and the phylogenetic relationships among genome-sequenced 680 prokaryotes, the similarities among 4,631 clusters of orthologous groups of protein (COGs)’ presence/ absence and gene content trees were analyzed. The number of COGs was in the range of 103–2,199 (mean 1377.1) among 680 prokaryotes. Candidatus Nasuia deltocephalinicola str. NAS-ALF, an obligate symbiont with insects, showed the minimum COG, while Pseudomonas aeruginosa PAO1, an opportunistic pathogen, represented the maximum COG. The similarities between two prokaryotes were 49.30–99.78 % (mean 72.65%). Methanocaldococcus jannaschii DSM 2661 (hyperthermophilic and autotrophic, Euryarchaeota phylum) and Mesorhizobium loti MAFF303099 (mesophilic and symbiotic, alpha-Proteobacteria class) had the minimum amount of similarities. As gene content may represent the potential for an organism to adapt to each habitat, this may represent the history of prokaryotic evolution or the range of prokaryotic habitats at present on earth. COG content trees represented the following. First, two members of Chloroflexi phylum (Dehalogenimonas lykanthroporepellens BL-DC-9 and Dehalococcoides mccartyi 195) showed a greater relationship with Archaea than other Eubacteria. Second, members of the same phylum or class in the 16S rRNA gene were separated in the COG content tree. Finally, delta- and epsilon-Proteobacteria were in different lineages with other Proteobacteria classes in neighbor-joining (NJ) and maximum likelihood (ML) trees. The results of this study would be valuable to identifying the origins of organisms, functional relationships, and useful genes.
Keywords
COG (Clusters of Orthologous Groups of protein); gene content tree; maximum likelihood; neighbor-joining;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Galperin, M. Y., Makarova, K. S., Wolf, Y. I. and Koonin, E. V. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261-D269.   DOI
2 Guo, J., Ran, H., Zeng, J., Liu, D. and Xin, Z. 2016. Tafuketide, a phylogeny-guided discovery of a new polyketide from Talaromyces funiculosus Salicorn 58. Appl. Microbiol. Biotechnol. in press.
3 Horz, H. P. and Conrads, G. 2010. The discussion goes on: What is the role of euryarchaeota in humans? Archaea 2010, 967271
4 Klockgether, J., Munder, A., Neugebauer, J., Davenport, C. F., Stanke, F., Larbig, K. D., Heeb, S., Schöck, U., Pohl, T. M., Wiehlmann, L. and Tümmler, B. 2010. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J. Bacteriol. 192, 1113-1121.   DOI
5 http://microbes.ucsc.edu/cgi-bin/hgGateway?db=methJann1
6 http://www.ncbi.nlm.nih.gov/taxonomy/?term=Bacteroidetes/ Chlorobi%20group
7 Jahn, U., Huber, H., Eisenreich, W., Hugler, M. and Fuchs, G. 2007. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. J. Bacteriol. 189, 4108-4119.   DOI
8 Lang, J. M., Darling, A. E. and Eisen, J. A. 2013. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. PLoS One 8, e62510.   DOI
9 Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. and Doolittle, W. F. 2000. A kingdom level phylogeny of eukaryotes based on combined protein data. Science 290, 972-977.   DOI
10 Baum, D. 2008. Reading a phylogenetic tree: The meaning of monophyletic groups. Nat. Edu. 1, 190.
11 Tank, M. and Bryant, D. A. 2015. Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int. J. Syst. Evol. Microbiol. 65, 1426-1430.   DOI
12 Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G. and Huttenhower, C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814-821.   DOI
13 Lee, D. G., Kang, H. Y., Kim, S. H., Lee, S. H., Kim, C. M., Kim, S. J. and Lee, J. H. 2003. Classification of archaebacteria and bacteria using a gene content tree approach. KSBB J. 18, 39-44
14 Lee, D. G., Lee, J. H., Lee, S. H., Ha, B. J., Kim, C. M., Shim, D. H., Park, E. K., Kim, J. W., Li, H. Y., Nam, C. S., Kim, N. Y., Lee, E. J., Back, J. W. and Ha, J. M. 2005. Investigation of conserved genes in microorganism. J. Life Sci. 15, 261-266.   DOI
15 Shi T. 2016. Impact of gene family evolutionary histories on phylogenetic species tree inference by gene tree parsimony. Mol. Phylogenet. Evol. 96, 9-16.   DOI
16 Szöllősi, G. J., Tannier, E., Daubin, V. and Boussau, B. 2015. The inference of gene trees with species trees. Syst. Biol. 64, e42-e62.   DOI
17 Tian, J., Chen, H., Guo, Z., Liu, N., Li, J., Huang, Y., Xiang, W. and Chen, Y. 2016. Discovery of pentangular polyphenols hexaricins A-C from marine Streptosporangium sp. CGMCC 4.7309 by genome mining. Appl. Microbiol. Biotechnol. in press.
18 Wagner, M. and Horn, M. 2006. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17, 241-249.   DOI
19 Lee, D. G. and Lee, S. H. 2015. Investigation of conservative genes in 711 prokaryotes. J. Life Sci. 25, 1007-1013.   DOI
20 Mukherjee, K., Bowman, K. S., Rainey, F. A., Siddaramappa, S., Challacombe, J. F. and Moe, W. M. 2014. Dehalogenimonas lykanthroporepellens BL-DC-9T simultaneously transcribes many rdhA genes during organohalide respiration with 1,2-DCA, 1,2-DCP, and 1,2,3-TCP as electron acceptors. FEMS Microbiol. Lett. 354, 111-118.   DOI
21 Walter, J. and Ley, R. 2011. The human gut microbiome: Ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65, 411-429.   DOI
22 Dutilh, B. E., Huynen, M. A., Bruno, W. J. and Snel, B. 2004. The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J. Mol. Evol. 58, 527-539.   DOI
23 Chaffron, S., Rehrauer, H., Pernthaler, J. and von Mering, C. 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947-959.   DOI
24 Bennett, G. M. and Moran, N. A. 2013. Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a Phloem-feeding insect. Genome Biol. Evol. 5, 1675-1688.   DOI
25 Boeckmann, B., Marcet-Houben, M., Rees, J. A., Forslund, K., Huerta-Cepas, J., Muffato, M., Yilmaz, P., Xenarios, I., Bork, P., Lewis, S. E. and Gabaldón, T. 2015. Quest for orthologs entails quest for tree of life: In search of the gene stream. Genome Biol. Evol. 7, 1988-1999.   DOI
26 Bos, D. H. and Posada, D. 2005. Using models of nucleotide evolution to build phylogenetic trees. Dev. Comp. Immunol. 29, 211-227.   DOI
27 Chung, Y. and Ané, C. 2011. Comparing two Bayesian methods for gene tree/species tree reconstruction: simulations with incomplete lineage sorting and horizontal gene transfer. Syst. Biol. 60, 261-275.   DOI
28 ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data
29 Löffler, F. E., Yan, J., Ritalahti, K. M., Adrian, L., Edwards, E. A., Konstantinidis, K. T., Müller, J. A., Fullerton, H., Zinder, S. H. and Spormann, A. M. 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63, 625-635.   DOI
30 Lienau, E. K., DeSalle, R., Rosenfeld, J. A. and Planet, P. J. 2006. Reciprocal illumination in the gene content tree of life. Syst. Biol. 55, 441-453.   DOI
31 Zheng, J., Zhao, X., Lin, X. B. and Gänzle, M. 2015. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Sci. Rep. 5, 18234.   DOI
32 Ludwig, W. and Klenk, H. P. 2000. Overview: A phylogenetic backbone and taxonomic framework for procaryotic systematics. pp. 49-65. In Boone, D. R., Castenholz, R. W. and Garrity, G. M. (eds.) Bergey's Manual of Systematic Bacteriology Volume 1. 2nd edition. Springer-Verlag , NY.
33 Rajendhran, J. and Gunasekaran, P. 2011. Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence analysis and beyond. Microbiol. Res. 166, 99-110.   DOI
34 Salichos, L. and Rokas, A. 2013. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497, 327-331.   DOI