• Title/Summary/Keyword: CO2 배출

Search Result 1,751, Processing Time 0.031 seconds

GHG emissions data extraction and analysis of the power consumption of the lighting installation in the building using a BIM (BIM을 활용한 건축조명의 소비전력에 따른 온실가스 배출량 데이터 추출 및 분석)

  • Lim, Myoung-Su;Su, Kang-jin;Oh, Min-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1446-1449
    • /
    • 2015
  • 본 논문에서는 BIM TOOL 중 하나인 AUTODESK사의 Revit Softwere를 활용하여 건축물에서 필수적으로 사용하고 있는 전기 설비 중 조명설비를 대상으로 전력소비에 따라 발생하는 온실가스인 이산화탄소($CO_2$), 메탄($CH_4$), 아산화질소($N_2O$) 배출량을 추정하여 건축물 에너지절감의 필요성을 강조하고 증명하고자 한다. BIM을 적용 할 수 있는 설계, 시공, 유지보수 외에 사용자의 전력소비에 따른 배출량을 연계한 데이터를 추출하여 온실가스 감축을 위한 전력절감의 TOOL 활용과 국가 정책, 제도 및 지침에 적극 활용되기를 기대한다.

  • PDF

The Evaluation of GHG Emissions in Railroad Construction Sector (철도건설의 온실가스 배출량 산정평가)

  • Lee, Jae-Young;Jung, Woo-Sung;Hwang, In-Hwan;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.271-275
    • /
    • 2011
  • According to governmental policies for green growth, the increase in the traffic volume of railroad is a representative method to reduce total greenhouse gas (GHG) emitted from transport. Comprehensive assessment for the GHG emission of railroad has been studied to compare the difference of transport modes just in the operating step excluded the construction step. The purpose of this study was to evaluate GHG emissions in railroad construction sector. The targets were some construction works for civil, track, building, and electric system in A line. The GHG emission source of constructing railroad infrastructure was mainly the energy consumption of heavy equipments. As a result, the civil construction sector showed more than 96% of total GHG emissions and its specific GHG emission was 2.191 ton $CO_2e/m$. Also, the specific GHG emissions of civil construction works were of the order: earthworks > tunnels > bridges > station. In future, it will be required to calculate the overall GHG emission of railroad through life cycle approaches including operation, maintenance and disposal step.

A Study on the Reaction Characteristics of $CO_2$ Mineral Carbonation by Using Serpentine (Serpentine을 이용한 $CO_2$ 미네랄 탄산염화 반응 특성에 관한 연구)

  • 이대환;김형택;최병철;최봉국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.679-684
    • /
    • 2003
  • 급속한 경제성장과 산업발달로 인해 국내외 에너지 소비량은 매년 크게 증가하고 있으며 이에 따라 화석연료의 사용도 증가하는 추세이다. 연소반응을 통한 화석연료의 사용은 GHG 중 가장 큰 요인인 $CO_2$를 배출한다. 따라서 막대한 양으로 배출되고 있는 $CO_2$ 발생을 억제하기 위하여 다양한 이산화탄소 고정화 기술이 연구 중에 있다. 그 중에서 경제성이 있고, 환경친화적이며 대량의 $CO_2$를 안정적이고 영구적으로 처리할 수 있는 기술로 주목되고 있는 연구가 광물질을 이용한 $CO_2$ 미네랄 Carbonation 처리기술에 대하여 반응특성을 고찰하였다. 대상 광물질로 Ca 보다 $CO_2$ 처리 시 친화적인 것으로 알려진 Mg가 많이 함유된 Silicate 계열의 사문석(Serpentine[Mg$_3$Si$_2$O$_{5}$(OH)$_4$])을 대상으로 Carbonation 반응특성을 실험을 통하여 고찰하였다. 실험은 TGA를 이용한 분석실험과 200cc 급 Autoclave를 이용한 $CO_2$의 직접주입실험을 수행하였다. TGA분석과 200cc 급 Autoclave를 이용한 실험을 통해서 Serpentine 의 경우 실험에서 정한 운전조건에서 $CO_2$와의 Carbonation 반응에 적합한 물질로 판단된다는 결론을 도출하였다.

  • PDF

Economic Analysis of Cogeneration System Considering Economical Value of $CO_2$ Reduction Effect (이산화탄소 저감 효과의 경제적인 가치를 고려한 Cogeneration System의 경제성 분석)

  • Kang, Yul-Ho;Ku, Bon-Cheol;Han, Young-Cheol;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1117-1121
    • /
    • 2008
  • Recently energy consumption and $CO_2$ emission issue are important problem on international society. The present study has been conducted economic analysis considering economical value of $CO_2$ reduction effect. We analyze annual energy cost and annual $CO_2$ emission of the cogeneration system and gas boiler system in hotel. The first results shows that annual energy cost of cogeneration system (751,740,126 won) is more profitable than gas boiler system (801,128,408 won) by 6.2% (49,388,281 won). The second results shows that annual $CO_2$ emission of cogeneration system (3,297 ton) is less than gas boiler system (3,536 ton) by 6.8% (239 ton). The Economical value of $CO_2$ reduction effect is 4,773,898 won. The cost effect according to the reduction of $CO_2$ is corresponding to 9.7% of reduction cost for total energy cost. The result of this study means that $CO_2$ reduction effect is essential item in introduction and change of facility for economic analysis.

  • PDF

Evaluation of Reduction of CO2 Emission Achieved by Using Low-carbon Recycled Cement with Cementitious Waste Powder (폐미분말을 원료로 한 저탄소형 재생시멘트의 CO2배출량 저감평가)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.250-251
    • /
    • 2014
  • With the recent movement toward sustainable development, many efforts have been made to reduce environmental loads in various domains of industry. In particular, a great deal of research and technology development has been underway on approaches to reducing industrial waste and the emission of greenhouse gases. For this reason, a quantitative analysis of the reduction in CO2 emission that could be achieved by replacing limestone material with cementitious waste powder was performed in this study. Through the analysis, it was found that CO2 emissions were reduced by up to 50 percent compared with the scenario in which OPC was used, which suggests that it is possible to reduce global CO2 emissions by approximately 5percent, or by 446.4 Tg of the 965 Tg of CO2 emissions generated by the cement industry, in the total global CO2 emissions of 19300Tg.

  • PDF

Study on the Relationship between CO2, Nuclear, and Renewable Energy Generation in Korea, Japan and Germany (CO2 배출, 원자력에너지, 신재생에너지 발전량과의 관계분석: 한국, 일본, 독일을 중심으로)

  • Yun, Junghye;Kang, Sangmok
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.9-22
    • /
    • 2020
  • This study analyzed the short- and long-term effects of nuclear and renewable energy generation on CO2 emissions in Korea, Japan, and Germany from 1987 to 2016 by using the unit root test, Johansen cointegration test, and ARDL model. The unit root test was performed, and the Johansen cointegration test showed cointegration relationships among variables. In the long run, in Germany, the generation of both nuclear and renewable energy was found to affect CO2 emission reduction, while South Korea's renewable energy generation, including hydropower, increased the emissions. Japan only showed significance in fossil fuels. In the short run, in the three countries, the generation of nuclear and renewable energy, excluding hydropower, affected CO2 emission. However, in Korea and Germany, nuclear and renewable energy generation, respectively, affected CO2 emission reduction. Although the rest are significant, the results showed that they increased CO2 emissions.

A Study on Estimating Air Pullution in the Port of Incheon (인천항의 대기오염물질 배출량 산정 연구)

  • Lee, Jeong-Uk;Lee, Hyang-Suk
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.143-157
    • /
    • 2021
  • International organizations such as the World Health Organization, the Organization for Economic Development and Cooperation, and major developed countries recognize the seriousness of air pollution. International organizations such as the International Maritime Organization have also implemented various regulations to reduce air pollution from ships. In line with this international trend, the government has also enacted a special law on improving air quality in port areas, and is making efforts to reduce air pollution caused by ports. The purpose of the Special Act is to implement comprehensive policies to improve air quality in port areas. This study sought to identify the emissions of each source of air pollutants originating from the port and prepare basic data on setting the policy priorities. To this end, the analysis was conducted in six categories: ships, vehicles, loading and unloading equipment, railways, unloading/wild ash dust, road ash dust, and the methodology presented by the European Environment Agency(EEA) and the United States Environmental Protection Agency(EPA). The pollutants subject to analysis were analyzed for carbon monoxide(CO), nitrogen oxides (NOX), sulfur oxides(SOX), total airborne materials(TSP), particulate matter(PM10, PM2.5), and ammonia(NH3). The analysis showed a total of 7,122 tons of emissions. By substance, NOX accounted for the largest portion of 5,084 tons, followed by CO (984 tons), SOX (530 tons), and TSP (335 tons). By source of emissions, ships accounted for the largest portion with 4,107 tons, followed by vehicles with 2,622 tons, showing high emissions. This proved to be the main cause of port air pollution, with 57.6% and 36.8% of total emissions, respectively, suggesting the need for countermeasures against these sources.

Analysis of Carbon Emission from a Forward Osmosis and Reverse Osmosis Hybrid System for Water Reuse and Seawater Desalination (하수재이용 및 해수담수화를 위한 정삼투-역삼투 융합공정의 탄소배출량 분석)

  • Jeon, Jongmin;Kim, Suhan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.351-357
    • /
    • 2022
  • A conventional seawater reverse osmosis (SWRO) and a forward osmosis (FO) and reverse osmosis (RO) hybrid process to produce 1,000 m3/d of fresh water, were designed and compared in terms of carbon emission. When FO was adapted for the osmotic dilution, the required pressure for RO decreases, and thus energy consumption decreases. The decrease in carbon emission by decreased energy consumption (up to -0.73 kgCO2/m3 using coal as the energy source) was compared with the increase in carbon emission by the FO system (+0.16 kgCO2/m3), which is a function of various factors such as the number of FO modules and energy consumption. The comparison revealed that the FO-RO process causes less carbon emission compared with the SWRO process when the energy sources are coal and oil. However, if energy sources with low carbon emission such as solar, wind, and nuclear energy are selected, the carbon emission of the FO-RO process becomes higher than that of the SWRO process. This implies that the type of energy source is a key factor to determine the necessity of the FO-RO process from the aspect of carbon emission.

Membrane seperation of Carbon Dioxide (분리막을 이용한 이산화탄소 분리)

  • 이규호
    • Membrane Journal
    • /
    • v.4 no.2
    • /
    • pp.78-84
    • /
    • 1994
  • 이산화탄소의 분리회수가 필요한 공정은 지금까지 천연가스정제, 암모니아 제조시 수소정제, 매립지 가스, Enhanced oil revovery (EOR), Bio 가스정제 등이 있었으며, 최근에는 지구온난화의 주원인인 $CO_2$를 배출가스(Flue gas)로부터 분리하는 것이 중요한 과제로 대두되고 있다. 본 논문에서는 지구협약에 의해 방출규제가 따를 것으로 예상되는 Flue gas에 포함된 $CO_2$의 배출제어를 중심으로 분리막을 이용한 이산화탄소 분리회수기술을 살펴보고자 한다.

  • PDF

Analysis of Gas Emissions and Power Generation for Co-firing Ratios of NG, NH3, and H2 Based on NGCC (NGCC 기반 천연가스, 암모니아, 수소 혼소 발전 비율에 따른 CO2와 NOx 배출량 및 전력 생산량 분석)

  • Inhye Kim;Jeongjae Oh;Taesung Kim;Minsuk Im;Sunghyun Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.225-232
    • /
    • 2024
  • The reduction of CO2 emissions in the energy production sector, which accounts for 86.8% of total greenhouse gas emissions, is important to achieve carbon-neutrality. At present, 60% of total power generation in South Korea is coal and natural gas. Replacing fossil fuel with renewable energy such as wind and solar has disadvantages of unstable energy supply and high costs. Therefore, this study was conducted through the co-firing of natural gas, ammonia and hydrogen utilizing the natural gas combined cycle process. The results demonstrated reduction in CO2 emissions and 34%~238% of the power production compared to using only natural gas. Case studies on mass fractions of natural gas, ammonia and hydrogen indicated that power production and NOx emissions were inversely proportional to the ammonia ratio and directly proportional to the hydrogen ratio. This study provides guidelines for the use of various fuel mixtures and economic analysis in co-firing power generation.