• Title/Summary/Keyword: CNT-FET

Search Result 19, Processing Time 0.027 seconds

NOx Gas Detection Characteristics of MWCNT Gas Sensor by Electrode Spacing Variation (MWCNT 가스센서의 전극 간극 변화에 따른 NOx 가스 검출 특성)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.668-672
    • /
    • 2014
  • Carbon nanotubes(CNT) has chemical stability and great sensitivity characteristics. In particular, the gas sensor required characteristics such as rapid, selectivity and sensitivity sensor. Therefore, CNT are ideal materials to gas sensor. So, we fabricated the NOx gas sensors of MOS-FET type using the MWCNT (multi-walled carbon nanotube). The fabricated sensor was used to detect the NOx gas for the variation of $V_{gs}$(gate-source voltage) and electrode changed electrode spacing=30, 60, 90[${\mu}m$]. The gas sensor absorbed with the NOx gas molecules showed the decrease of resistance, and the sensitivity of sensor was increased by magnification of electrode spacing. Furthermore, when the voltage($V_{gs}$) was applied to the gas sensor, the decrease in resistance was increased. On the other hand, the sensor sensitivity for the injection of NOx gas was the highest value at the electrode spacing $90[{\mu}m]$. We also obtained the adsorption energy($U_a$) using the Arrhenius plots by the reduction of resistance due to the voltage variations. As a result, we obtained that the adsorption energy was increased with the increment of the applied voltages.

Biologically-Inspired Selective and Sensitive Trinitrotoluene Sensors Using Conjugated Lipid-like Polymer Nanocoatings for CNT-FET Sensors

  • Jaworski, Justyn;Kim, Tae-Hyun;Yokoyama, Keisuke;Chung, Woo-Jae;Wang, Eddie;Lee, Byung-Yang;Hong, Seung-Hun;Majumdar, Arun;Lee, Seung-Wuk;Kwon, Ki-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.495-495
    • /
    • 2011
  • Miniaturized sensors capable of both sensitive and selective real-time monitoring of target analytes are tremendously valuable for various applications ranging from hazard detection to medical diagnostics. The wide-spread use of such sensors is currently limited due to insufficient selectivity for target molecules. We developed selective nanocoatings by combining trinitrotoluene (TNT) receptors bound to conjugated polydiacetylene (PDA) with single-walled carbon nanotube-field effect transistors (SWNT-FET). Selective binding events between TNT molecules and phage display derived TNT receptors were effectively transduced to sensitive SWNT-FET conductance sensors through the PDA coating. The resulting sensors exhibited unprecedented 1 fM sensitivity toward TNT in real time, with excellent selectivity over various similar aromatic compounds. Our biomimetic receptor coating approach may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes.

  • PDF

Detection Characteristics for the Ultra Lean NOx Gas Concentration Using the MWCNT Gas Sensor Structured with MOS-FET (MOS-FET 구조의 MWCNT 가스센서를 이용한 초희박 NOx 가스 검출 특성)

  • Kim, Hyun-Soo;Lee, Seung-Hun;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.707-711
    • /
    • 2013
  • Carbon nanotubes(CNT) has strength and chemical stability, greatly conductivity characteristics. In particular, MWCNT (multi-walled carbon nanotubes) show rapidly resistance sensitive for changes in the ambient gas, and therefore they are ideal materials to gas sensor. So, we fabricated NOx gas sensors structured MOS-FET using MWCNT (multi-walled carbon nanotubes) material. We investigate the change resistance of NOx gas sensors based on MOS-FET with ultra lean NOx gas concentrations absorption. And NOx gas sensors show sensitivity on the change of gate-source voltage ($V_{gs}=0[V]$ or $V_{gs}=3.5[V]$). The gas sensors show the increase of sensitivity with increasing the temperature (largest value at $40^{\circ}C$). On the other hand, the sensitivity of sensors decreased with increasing of NOx gas concentration. In addition, We obtained the adsorption energy($U_a$), $U_a$ = 0.06714[eV] at the NOx gas concentration of 8[ppm], $U_a$ = 0.06769[eV] at 16[ppm], $U_a$ = 0.06847[eV] at 24[ppm] and $U_a$ = 0.06842[eV] at 32[ppm], of NOx gas molecules concentration on the MWCNT gas sensors surface with using the Arrhenius plots. As a result, the saturation phenomena is occurred by NOx gas injection of concentration for 32[ppm].

NOx Gas Detection Characterization with Vgs in the MWCNT Gas Sensor of MOS-FET Type (MOS-FET구조의 MWCNT 가스센서에서 Vgs의 변화에 따른 NOx 가스 검출 특성)

  • Kim, Hyun-Soo;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.257-261
    • /
    • 2014
  • Carbon nanotubes (CNT) has the excellent physical characteristics in the sensor, medicine, manufacturing and energy fields, and it has been studied in those fields for the several years. We fabricated the NOx gas sensors of MOS-FET type using the MWCNT. The fabricated sensor was used to detect the NOx gas for the variation of $V_{gs}$ (gate-source voltage) with the ambient temperature. The gas sensor absorbed the NOx gas molecules showed the decrease of resistance, and the sensitivity of sensor was reduced by the NOx gas molecules accumulated on the MWCNT surface. Furthermore, when the voltage ($V_{gs}$) was applied to the gas sensor, the term of the decrease in resistance was increased. On the other hand, the sensor sensitivity for the injection of NOx gas was the highest value at the ambient temperature of $40^{\circ}C$. We also obtained the adsorption energy ($40^{\circ}C$) using the Arrhenius plots by the reduction of resistance due to the $V_{gs}$ voltage variations. As a result, we obtained that the adsorption energy also was increased with the increasement of the applied $V_{gs}$ voltages.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

The Fabrication of FET-Type NOx Gas Sensing System Using the MWCNT (다중벽 카본 나노튜브를 이용한 FET식 NOx 가스 센싱 시스템 제작)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.325-329
    • /
    • 2013
  • Carbon nanotubes(CNT) have excellent electrical, chemical stability and mechanical properties. These can be used in a variety of fields. MWCNT are extremely sensitive for minute changes in the ambient gas, namely, their sensing properties varies greatly with the absorption of gas such as NOx and $H_2$. We investigate the electrical properties of CNTs and make a NOx gas sensor based on Multi-walled carbon nanotubes (MWCNT) materials. We obtained the NOx gas sensor of MWCNT based on P-type Si wafer that has the resistivity of $1.667{\times}10^{-1}[{\Omega}{\cdot}cm]$. We knew that the sensitivity of sensor decreased with increasing of NOx gas concentration. And the sensitivity of sensor shows the largest value at $20^{\circ}C$. The sensitivity of sensor decrease with increasing the temperature. Also absorption energy of NOx gas molecule on the MWCNT surface decreases with increasing concentration of NOx gas.

Programmed APTES and OTS Patterns for the Multi-Channel FET of Single-Walled Carbon Nanotubes (SWCNT 다중채널 FET용 표면 프로그램된 APTES와 OTS 패턴을 이용한 공정에 대한 연구)

  • Kim, Byung-Cheul;Kim, Joo-Yeon;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper, we have investigated a selective assembly method of single-walled carbon nanotubes (SWCNTs) on a silicon substrate using only photolithographic process and then proposed a fabrication method of field effect transistors (FETs) using SWCNT-based patterns. The aminopropylethoxysilane (APTES) patterns, which are formed for positively charged surface molecular patterns, are utilized to assemble and align millions of SWCNTs and we can more effectively assemble on a silicon (Si) surface using this method than assembly processes using only the 1-octadecyltrichlorosilane (OTS). We investigated a selective assembly method of SWCNTs on a Si surface using surface-programmed APTES and OTS patterns and then a fabrication method of FETs. photoresist(PR) patterns were made using photolithographic process on the silicon dioxide (SiO2) grown Si substrate and the substrate was placed in the OTS solution (1:500 v/v in anhydrous hexane) to cover the bare SiO2 regions. After removing the PR, the substrate was placed in APTES solution to backfill the remaining SiO2 area. This surface-programmed substrate was placed into a SWCNT solution dispersed in dichlorobenzene. SWCNTs were attracted toward the positively charged molecular regions, and aligned along the APTES patterns. On the contrary, SWCNT were not assembled on the OTS patterns. In this process, positively charged surface molecular patterns are utilized to direct the assembly of negatively charged SWCNT on SiO2. As a result, the selectively assembled SWCNT channels can be obtained between two electrodes(source and drain electrodes). Finally, we can successfully fabricate SWCNT-based multi-channel FETs by using our self-assembled monolayer method.

Selective Elimination of Metallic Single-walled Carbon Nanotubes via Microwave Irradiation

  • Kim, Seong-Hwan;Kim, Yu-Seok;Song, U-Seok;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.492-492
    • /
    • 2011
  • 단일벽 탄소나노튜브(Single-Walled Carbon Nanotubes, SWCNTs)는 매우 우수한 전기적, 광전자적 특성을 가지고 있어 차세대 나노 전자소자 물질로 각광받고 있다. 특히, 이들의 전기적 특성은 직경과 카이랄리티(chirality)에 따라 금속성(metallic)과 반도체성(semiconducting)으로 구분된다. 각 특성에 따라 금속성은 투명전극, 반도체성은 전계효과 트랜지스터(CNT-FET)로 활용가능성이 높다. 하지만, 일반적으로 단일벽 탄소나노튜브는 이 두 가지의 특성이 혼재되어 합성되기 때문에, 그들의 선택적 분리는 나노튜브 기반 전자소자 응용을 위해 매우 중요한 과정 중 하나이다. 최근에는 반응 가스를 이용한 선택적 제거, 밀도차를 이용한 원심분리법(density gradient ultracentrifugation) 등 다양한 방법들이 보고된 바 있다. 본 연구는 대기 중에서 마이크로웨이브 조사하여 금속성 나노튜브만을 선택적으로 제거하였다. 마이크로웨이브 조사는 CVD 방법과 전기 방전법으로 성장된 단일벽 탄소나노튜브에 800W로 조사 시간을 변화하며 수행하였다. 실험 결과, 조사 시간이 증가할수록 두 종류의 나노튜브에서 반도체성 나노튜브는 남아있는 반면 금속성 나노튜브는 점차 제거되었다. 이러한 원인은 각 전기적 특성에 따른 유전상수 차이에 의하여 기인한 것이다. 전기적 특성과 결정성은 라만 분광법(Raman spectroscopy)을 통하여 분석하였으며, 직경 및 분산정도는 주사전자현미경(scanning electron microscope), 투과전자현미경(tunneling electron microscope)으로 관찰하였다.

  • PDF

탄소나노튜브-그래핀 하이브리드 박막을 이용한 투명전극과 전계효과트랜지스터로의 응용

  • Kim, Seong-Ho;Song, U-Seok;Jeong, Min-Uk;Gang, Min-A;Lee, Seon-Suk;Im, Jong-Seon;Hwang, Jin-Ha;Myeong, Seong;An, Gi-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.177.1-177.1
    • /
    • 2014
  • 단일벽 탄소나노튜브(single-wall carbon nanotube)와 그래핀(graphene)과 같은 저차원 구조의 탄소물질은 우수한 기계적, 전기적, 열적 광학적 특성으로 인해 투명하고 유연한 차세대 전자소자로의 응용(투명전극, 투명트랜지스터, 투명센서 등)을 위한 연구가 활발히 진행되고 있다. 본 연구에서는 단일벽 탄소나노튜브와 단일층 그래핀을 이용한 하이브리드 박막을 제작하여 투명전극(transparent electrode)과 전계효과 트랜지스터(field effect transistors)로의 응용 가능성을 연구하였다. 하이브리드 박막의 제작은 간단한 방법으로 단일벽 탄소나노튜브가 스핀 코팅된 구리 호일 위에 열 화학기상증착법(thermal chemical vapor deposition)을 통해 제작 하였다. 제작 과정 중 탄소나노튜브의 스핀코팅 조건을 최적화하여 하이브리드 박막에서 탄소나노 튜브의 밀도와 정렬을 제어하였으며 하이브리드 박막 제작 후 스핀 코팅 방향에 따른 박막의 저항을 측정하여 단일벽 탄소나노튜브의 코팅 방향에 따라 박막의 저항이 달라지는 모습을 확인할 수 있었다. 하이브리드 박막의 투명전극 특성을 확인 한 결과 $300{\Omega}/sq$의 면저항에 96.4%의 우수한 투과도를 보이는 것을 확인 할 수 있었다. 또한 하이브리드 박막은 CVD 그래핀과 비교하여 향상된 와 on-state current를 보이는 것을 확인 할 수 있었다. 우리는 단일벽 탄소나노튜와 단일층 그래핀으로 이루어진 하이브리드 박막이 앞으로의 투명하고 유연한 소자제작 연구에 있어 새로운 투명 전극 및, 트랜지스터 제작 방법을 제시 할 수 있을 것이다.

  • PDF