Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.9.707

Detection Characteristics for the Ultra Lean NOx Gas Concentration Using the MWCNT Gas Sensor Structured with MOS-FET  

Kim, Hyun-Soo (Department of Electrical Engineering, Gachon University)
Lee, Seung-Hun (Department of Electrical Engineering, Kwangwoon University)
Jang, Kyung-Uk (Department of Electrical Engineering, Gachon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.9, 2013 , pp. 707-711 More about this Journal
Abstract
Carbon nanotubes(CNT) has strength and chemical stability, greatly conductivity characteristics. In particular, MWCNT (multi-walled carbon nanotubes) show rapidly resistance sensitive for changes in the ambient gas, and therefore they are ideal materials to gas sensor. So, we fabricated NOx gas sensors structured MOS-FET using MWCNT (multi-walled carbon nanotubes) material. We investigate the change resistance of NOx gas sensors based on MOS-FET with ultra lean NOx gas concentrations absorption. And NOx gas sensors show sensitivity on the change of gate-source voltage ($V_{gs}=0[V]$ or $V_{gs}=3.5[V]$). The gas sensors show the increase of sensitivity with increasing the temperature (largest value at $40^{\circ}C$). On the other hand, the sensitivity of sensors decreased with increasing of NOx gas concentration. In addition, We obtained the adsorption energy($U_a$), $U_a$ = 0.06714[eV] at the NOx gas concentration of 8[ppm], $U_a$ = 0.06769[eV] at 16[ppm], $U_a$ = 0.06847[eV] at 24[ppm] and $U_a$ = 0.06842[eV] at 32[ppm], of NOx gas molecules concentration on the MWCNT gas sensors surface with using the Arrhenius plots. As a result, the saturation phenomena is occurred by NOx gas injection of concentration for 32[ppm].
Keywords
MWCNT (multi-walled carbon nano tube); MOS-FET; NOx Gas sensor; Ultra lean concentrations;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, Sensor and Act. B, 171, 25 (2012).
2 M. K. Kwon and Y. T. Hong, J. KIEEME, 22, 38 (2009).
3 B. C. Yadav, Satyendra Single, and Anuradha Yadav, Appl. Surface. Sci., 257, 1960 (2011).   DOI   ScienceOn
4 G. Chakraborty, K. Gupta, A. K. Meikap, R. Babu, and W. J. Blau, Solid State Comm., 152, 13 (2012).   DOI   ScienceOn
5 J. G. Kim, S. C. Kang, E. J. Shin, D. Y. Kim, J. H. Lee, and Y. S. Lee, Appl. Chem. Eng., 23, 47 (2012).
6 P. S. Su and T. T. Pan, Mat. Chem. Phys., 125, 351 (2001).
7 S. H. Lee and J. S. Im, S. C. Kang, and T. S. Bae, Chem. Phys. Lett., 497, 191 (2010).   DOI   ScienceOn
8 J. G. Park and K. J. Lee, J. Kor. Inst. Met. & Mater., 13, 38 (2000).
9 G. Wiegleb and J. Heitbaum, Sens. Act. B, 17, 93 (1994).   DOI   ScienceOn
10 D. E. Williams, Sens. Act. B, 57, 1 (1999).   DOI   ScienceOn
11 E. H. Espinosa, R. Ionescu, C. Bittencourt, A. Felten, R. Erni, G. Van Tendeloo, J. J. Pireaux, and E. Llobet, Thin Solid Films, 515, 8322 (2007).   DOI   ScienceOn
12 T. Ueda, S. Katsuki, N. Heidari Abhari, T. Ikegami, F. Mitsugi, and T. Nakamiya. Surf. Coat. Technol., 520, 5325 (2008).
13 H. S. Kim and K. U. Jang, J. KIEEME, 26, 325 (2013).
14 W. J. Lee, M. K. Choi, and K. U. Jang, J. KSDIT, 11, 55 (2012).