Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.10.668

NOx Gas Detection Characteristics of MWCNT Gas Sensor by Electrode Spacing Variation  

Kim, Hyun-Soo (Department of Electrical Engineering, Gachon University)
Jang, Kyung-Uk (Department of Electrical Engineering, Gachon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.10, 2014 , pp. 668-672 More about this Journal
Abstract
Carbon nanotubes(CNT) has chemical stability and great sensitivity characteristics. In particular, the gas sensor required characteristics such as rapid, selectivity and sensitivity sensor. Therefore, CNT are ideal materials to gas sensor. So, we fabricated the NOx gas sensors of MOS-FET type using the MWCNT (multi-walled carbon nanotube). The fabricated sensor was used to detect the NOx gas for the variation of $V_{gs}$(gate-source voltage) and electrode changed electrode spacing=30, 60, 90[${\mu}m$]. The gas sensor absorbed with the NOx gas molecules showed the decrease of resistance, and the sensitivity of sensor was increased by magnification of electrode spacing. Furthermore, when the voltage($V_{gs}$) was applied to the gas sensor, the decrease in resistance was increased. On the other hand, the sensor sensitivity for the injection of NOx gas was the highest value at the electrode spacing $90[{\mu}m]$. We also obtained the adsorption energy($U_a$) using the Arrhenius plots by the reduction of resistance due to the voltage variations. As a result, we obtained that the adsorption energy was increased with the increment of the applied voltages.
Keywords
MWCNT (multi-walled carbon nano tube); MOS-FET; NOx gas sensor; Electrode spacing; $V_{gs}$(gate-source voltage);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. S. Kim, S. H. Lee, and K. U. Jang, J. KIEEME, 26, 707 (2013).
2 M. K. Kwon and Y. T. Hong, J. KIEEME, 22, 38 (2009).
3 A. Abdellah, A. Abdelhalim, F. Loghin, P. Kohler, Z. Ahmad, G. Scarpa, and P. Lugli, J. IEEE Sens, 13, 10 (2013).
4 N. Peng, Q. Zhang, C. L. Chow, O. K. Tan, and N. Marzarl, Nano Lett., 9, 1626 (2009).   DOI
5 W. J. Lee, M. K. Choi, and K. U. Jang, J. KSDIT, 11, 55 (2012).
6 A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, Sensor and Act. B, 171, 25 (2012).
7 H. S. Kim, Y. S. Park, and K. U. Jang, J. KIEEME, 26, 257 (2014).
8 J. G. Kim, S. C. Kang, E. J. Shin, D. Y. Kim, J. H. Lee, and Y. S. Lee, Appl. Chem. Eng., 23, 47 (2012).
9 U. S. Jo, S. I. Mun, Y. J. Kim, Y. H. Lee, and B. G. Ju, J. KIEEME, 17, 294 (2004).
10 B. L. Allen, P. D. Kichambare, and A. Star, Adv. Mater., 19, 1439 (2007).   DOI   ScienceOn
11 T. Someya, J. Small, P. Kim, C. Nuckolls, and J. T. Yardley, Appl. Nano. Lett., 3, 877 (2003).   DOI   ScienceOn
12 S. J. Sim and J. P. Kim, J. Kor. Inst. Eng. & Chem., 14, 31 (2011).
13 T. Ueda, S. Katsuki, N. Heidari Abhari, T. Ikegami, F. Mitsugi, and T. Nakamiya, Surf. Coat. Technol., 520, 5325 (2008).
14 S. Iijima, Nature, 354, 56 (1991).   DOI
15 J. Suehiro, H. Imakiire, S. Hidaka, W. Ding, G. Zhou, K. Imsaka, and M. Hare, Sensor and Act. B: Chem, 114, 943 (2006).   DOI   ScienceOn
16 H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M.M.C. Cheng, Sensor and Act B: Chem., 157, 310 (2011).   DOI   ScienceOn
17 H. S. Kim and K. U. Jang, J. KIEEME, 26, 325 (2013).
18 E. H. Espinosa, R. Ionescu, C. Bittencourt, A. Felten, R. Erni, G. Van Tendeloo, J. J. Pireaux, and E. Llobet, Thin Solid Films, 515, 8322 (2007).   DOI