• Title/Summary/Keyword: CNT Density

Search Result 149, Processing Time 0.03 seconds

A Study on the Performance Variation of CNTFET SRAM by the Partial Density Change of Carbon Nanotubes (탄소나노튜브 부분 밀도 변화에 의한 CNTFET SRAM 성능 변화에 대한 연구)

  • Cho, Geunho
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.83-88
    • /
    • 2022
  • With high performance and wide application, a CNTFET has been attracting a lot of attention as a next-eneration semiconductor, but the manufacturing process of CNTFET has not been mature enough, which makes commercialization difficult. In order to overcome the imperfections of the CNTFET manufacturing process and to increase the possibility of commercialization, this paper analyzes the CNTFET SRAM performance variation according to the CNTFET partial density change based on the recently reported CNTFET manufacturing process. Through HSPICE circuit simulation analysis using the existing 32nm CNTFET HSPICE library file, transistors whose performance variation is less sensitive to partial CNT density are selected among the six transistors constituting the SRAM cell and acceptable CNT density range is proposed. As the result of analysis, it is found that when the CNT density of the two transistors connected to the bit line in SRAM cell changed from 6/32nm to 8/32nm, the deviation of SRAM performance is less than 9% and when the CNT density is less than 5/32nm, the SRAM delay is increased by more than 8 time.

Characteristics of Ni-Carbon Nanotube Composite Coatings with the CNT Content (CNT 첨가량에 따른 Ni-CNT 복합도금막의 특성)

  • Bae, KyooSik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2013
  • Ni-CNT(Carbon Nanotube) composite coatings is were formed by electrodeposition and their physical properties were investigated with variations of CNT content(1, 3, 6. 9 g/L) in the electrolyte solution, while the current density and electroplating time were fixed respectively at $6A/dm^2$ and 90 min.. With increasing CNT content from 1 to 9 g/L, incorporated CNTs into the composite coating were limited from 4.65 wt.% to 7.38 wt.%. Microhardness and contact angle values were increased with increasing CNT content of upto 3 g/L. With increasing the CNT content further, physical properties were degraded due to agglomeration, poor adhesion of CNTs to Ni matrix and thus rough surfaces. Optimum electroplating conditions were found to be the CNT content of 3 g/L, current density of 6 A/dm2 and electroplating time of 90 min.

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF

The effects of conductivity and CNT cathode on electricity generation in air-cathode microbial fuel cell (공기양극 미생물연료전지 시스템에서 전력발생특성에 미치는 전기전도도와 CNT 양극의 영향)

  • Yoo, Kyu-Seon;Park, Hyun-Soo;Song, Young-Chae;Woo, Jung-Hui;Lee, Chae-Young;Chung, Jae-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.355-360
    • /
    • 2012
  • The characteristics of power generation were investigated by changing the electrical conductivity from 10 to 40mS/cm using air-cathode microbial fuel cell, which had graphite fiber fabric(GFF) anode. There were three kinds of cathode used: one was carbon cloth cathode coated with Pt, another was carbon nanotube(CNT) cathode with non-precious catalyst of Fe-Cu-Mn, and the other was carbon nanotube(CNT) cathode without any catalyst. When it was operated in batch mode, power density of 1369.5mW/$m^2$ was achieved at conductivity of 20mS/cm. Power density from MFC with CNT cathode coated with multi-catalyst of Fe-Cu-Mn was shown about 985.55mW/$m^2$, which was 75.1% compared the power density of carbon cloth coated with Pt. This meant that CNT cathode coated with multi-catalyst of Fe-Cu-Mn could be an alternative of carbon cloth cathode.

A Study on the Circuit Design Method of CNTFET SRAM Considering Carbon Nanotube Density (탄소나노튜브 밀도를 고려한 CNTFET SRAM 디자인 방법에 관한 연구)

  • Cho, Geunho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.473-478
    • /
    • 2021
  • Although CNTFETs have attracted great attention due to their ability to increase semiconductor device performance by about 13 times, the commercialization of CNTFETs has been challenging because of the immature deposition process of CNTs. To overcome these difficulties, circuit design method considering the known limitations of the CNTFET manufacturing process is receiving increasing attention. SRAM is a major element constituting microprocessor and is regularly and repeatedly positioned in the cache memory; so, it has the advantage that CNTs can be more easily and densely deposited in SRAM than other circuit blocks. In order to take these advantages, this paper presents a circuit design method for SRAM cells considering CNT density and then evaluates its performance improvement using HSPICE simulation. As a result of simulation, it is found that when CNTFET is applied to SRAM, the gate width can be reduced by about 1.7 times and the read speed also can be improved by about 2 times when the CNT density was increased in the same gate width.

The consolidation of CNT/Cu mixture powder using equal channel angular pressing (Equal Channel Angular Pressing 공정을 이용한 CNT/Cu 복합분말의 고형화)

  • Yoon, S.C.;Quang, P.;Kim, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.119-122
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of 1 vol.% carbon nanotube (CNT)-metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT-Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature. It was found by mechanical testing of the consolidated 1 vol.% CNT-Cu that high mechanical strength could be achieved effectively as a result of the Cu matrix strengthening and improved particle bonding during ECAP. The ECAP processing of powders is a viable method to achieve fully density CNT-Cu nanocomposites.

  • PDF

Properties of Field Emission Electrons for CVD-grown Carbon Nanotubes (CVD법으로 제조한 탄소 나노튜브의 전계 전자 방출 특성)

  • Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.424-428
    • /
    • 2003
  • The microstructure and field emission properties of carbon nanotubes(CNT) grown by Ni-catalytic chemical vapor deposition(CVD) were investigated. CVD-grown CNT had a high density of curved shape with randomly oriented. It was found that an increase in electric field caused an increase in field emission current and field emission sites of CNT. The maximum field emission current density was measured to be 3.6 ㎃/$\textrm{cm}^2$ at 2.5 V/$\mu\textrm{m}$, while the brightness of 56 cd/$\textrm{cm}^2$ was observed for the CNT-grown area of 0.8 $\textrm{cm}^2$ from a phosphor screen. Field emission current at constant electric field gradually decreased initially and then stabilized with time.

Improving the Long-term Field Emission Stability of Carbon Nanotubes by Coating Co and Ni Oxide Layers

  • Choe, Ju-Seong;Lee, Han-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.1-18.1
    • /
    • 2011
  • Some applications of carbon nanotubes (CNTs) as field emitters, such as x-ray tubes and microwave amplifiers, require high current emission from a small emitter area. To emit the high current density, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects including high crystallinity, aspect ratio, distribution density, height uniformity, adhesion on a substrate, low outgassing rate during electron emission in vacuum, etc. In particular, adhesion of emitters on the substrate is one of the most important parameters to be secured for high current field emission from CNTs. So, we attempted a novel approach to improve the adhesion of CNT emitters by incorporating metal oxide layers between CNT emitters. In our previous study, CNT emitters were fabricated on a metal mesh by filtrating the aqueous suspensions containing both highly crystalline thin multiwalled CNTs and thick entangled multiwalled CNTs. However, the adhesion of CNT film was not enough to produce a high emission current for an extended period of time even after adopting the metal mesh as a fixing substrate of the CNT film. While a high current was emitted, some part of the film was shown to delaminate. In order to strengthen the CNT networks, cobalt-nickel oxides were incorporated into the film. After coating the oxide layer, the CNT tips seemed to be more strongly adhered on the CNT bush. Without the oxide layer, the field emission voltage-current curve moved fast to a high voltage side as increasing the number of voltage sweeps. With the cobalt-nickel oxide incorporated, however, the curve does not move after the second voltage sweep. Such improvement of emission properties seemed to be attributed to stronger adhesion of the CNT film which was imparted by the cobalt-nickel oxide layer between CNT networks. Observed after field emission for an extended period of time, the CNT film with the oxide layer showed less damage on the surface caused by high current emission.

  • PDF

Effect of Nano-Sized Silver Powders in CNT Paste on Field Emission Characteristics of Carbon Nanotube Cathode (탄소나노튜브 캐소드의 전계방출 특성에 미치는 CNT 페이스트용 나노입자 은분말의 영향)

  • An, Young-Je;Lee, Ji-Eon;Shin, Heon-Cheol;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver (Ag) powders as a bonding material between the CNTs and cathode electrodes. The effects of the powder size on the sintering behavior, the current density and emission image for CNT cathodes were investigated. As the diameter of the Ag powders decreases to 10 nm, the sintering temperature of the CNT cathode was lowered primarily due to the higher specific surface area of the Ag powders. In this study, it was demonstrated that nano-sized Ag powders can be feasibly used as a bonding material for a screen-printed CNT cathode, yielding a high current density and a uniform emission image.

Flexible device 상용화를 위한 flexible supercapacitor 연구

  • Gang, Seung-Won;Bae, Jun-Ho;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.422.2-422.2
    • /
    • 2016
  • 스마트폰, 태블릿 등의 디바이스의 발전에 따라 휴대성이 매우 중요해졌다. 디바이스의 크기, 두께, 유연성에 관한 연구가 활발히 진행되고 있으며, 그 중에서도 energy storage device의 flexibility를 향상시키는 연구가 주목 받고 있다. Energy storage device의 성능 향상을 위해서는 power density를 높여야 하며 flexibility를 위해서는 전극판과 전극소재 간의 부착력을 증가시켜야 한다. 본 연구에서는, power density와 소재 간의 부착성을 개선시키기 위해 기존 graphene보다 표면적이 넓으며 power density가 좋고 전극판과의 부착성이 좋은 hybrid GNP-CNT를 사용하였다. 그리고 Ag NWs/CNT PET film 을 사용하여 전도성이 있는 flexible한 전극판을 사용하였다. SEM 측정을 통해 표면 분석을 하였고, sample에 패턴을 하고 Bending test를 하여 부착성을 확인하였다. 또한, CV curve를 측정하여 supercapacitor의 특성을 확인하였다. 향후, $MnO_2$ NWs를 hybrid GNP-CNT에 합성시킴으로 energy storage device의 energy density를 더욱 향상시키는 연구를 진행할 것이다.

  • PDF