Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.7.424

Properties of Field Emission Electrons for CVD-grown Carbon Nanotubes  

Lee, Rhim-Youl (Department of New Materials Engineering, Dankook University)
Publication Information
Korean Journal of Materials Research / v.13, no.7, 2003 , pp. 424-428 More about this Journal
Abstract
The microstructure and field emission properties of carbon nanotubes(CNT) grown by Ni-catalytic chemical vapor deposition(CVD) were investigated. CVD-grown CNT had a high density of curved shape with randomly oriented. It was found that an increase in electric field caused an increase in field emission current and field emission sites of CNT. The maximum field emission current density was measured to be 3.6 ㎃/$\textrm{cm}^2$ at 2.5 V/$\mu\textrm{m}$, while the brightness of 56 cd/$\textrm{cm}^2$ was observed for the CNT-grown area of 0.8 $\textrm{cm}^2$ from a phosphor screen. Field emission current at constant electric field gradually decreased initially and then stabilized with time.
Keywords
carbon nanotube; field emission; current density; field enhancement factor; brightness; stability.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Nutzendal, A. Zuttel, D. Chartouni and L. Schlapbach, Elecrochem. Solid-state Lett., 2, 30 (1999)   DOI
2 O. R. Monteiro, V. P. Mammana, M. C. Salvadori, J. W. Auger and S. Dimitrijevie, Appl. Phys. Lett., 71, 121 (2000)
3 S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Science, 283, 512 (1999)   DOI   ScienceOn
4 M. Yudasaka, Y. Kasuya, F. Kokai, K. Takahashi, M. Takizawa, S. Bandow and S. Iijima, Appl. Phys. Lett., 74, 377 (2002)   DOI   ScienceOn
5 Y. Chen, D. T. Shaw and L. Guo, Appl. Phys. Lett., 76, 2469 (2000)   DOI   ScienceOn
6 P. M. Ajayan, Carbon Nanotubes, p. 111, CRT, New York, USA (1977)
7 M. Sveningsson, R. E. Morjan, O. A. Nerushev, Y. Sato, J. Backstrom, E. E. B. Compell and F. Rohmund, Appl. Phys. A., 73, 409 (2001)   DOI   ScienceOn
8 Y. H. Wang, J. Lin and C. H. A. Huan, Thin Solid Films, 405, 243 (2002)   DOI   ScienceOn
9 J. M. Bonard, J. P Salvetat, T. Stockli, W. A. de Heer, L. Forro and A. Chatelain, Appl. Phys. Lett., 73, 918 (1998)   DOI   ScienceOn
10 R. H. Fowler and L. Nordheim, Proc. R. Soc. Lond. Ser., A119, 173 (1928)   DOI
11 G. A. J. Amartunga and S. R. P. Silva, Appl. Phys. Lett., 68, 2529 (1996)   DOI
12 K. A. Dean and B. R. Chalamala, Appl. Phys. Lett., 75, 3017 (1999)   DOI
13 J. M. Kim, W. B. Chol, N. S. Lee and J. E. Jung, Diamond & Related Materials, 9, 1184 (2000)   DOI   ScienceOn
14 O. Groning, O. M. Kuttel, C. Emmenegger, P. Groning and L. Schlapbach, J. Vac. Sci. Tech., B18, 665 (2000)   DOI   ScienceOn
15 J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin and W. P. Dyke, Phys. Rev., 92, 45 (1953)   DOI