• Title/Summary/Keyword: CNN algorithms

Search Result 218, Processing Time 0.032 seconds

Hierarchical CNN-Based Senary Classification of Steganographic Algorithms (계층적 CNN 기반 스테가노그래피 알고리즘의 6진 분류)

  • Kang, Sanhoon;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.550-557
    • /
    • 2021
  • Image steganalysis is a technique for detecting images with steganographic algorithms applied, called stego images. With state-of-the-art CNN-based steganalysis methods, we can detect stego images with high accuracy, but it is not possible to know which steganographic algorithm is used. Identifying stego images is essential for extracting embedded data. In this paper, as the first step for extracting data from stego images, we propose a hierarchical CNN structure for senary classification of steganographic algorithms. The hierarchical CNN structure consists of multiple CNN networks which are trained to classify each steganographic algorithm and performs binary or ternary classification. Thus, it classifies multiple steganogrphic algorithms hierarchically and stepwise, rather than classifying them at the same time. In experiments of comparing with several conventional methods, including those of classifying multiple steganographic algorithms at the same time, it is verified that using the hierarchical CNN structure can greatly improve the classification accuracy.

A Study on the Recognition of Face Based on CNN Algorithms (CNN 알고리즘을 기반한 얼굴인식에 관한 연구)

  • Son, Da-Yeon;Lee, Kwang-Keun
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • Recently, technologies are being developed to recognize and authenticate users using bioinformatics to solve information security issues. Biometric information includes face, fingerprint, iris, voice, and vein. Among them, face recognition technology occupies a large part. Face recognition technology is applied in various fields. For example, it can be used for identity verification, such as a personal identification card, passport, credit card, security system, and personnel data. In addition, it can be used for security, including crime suspect search, unsafe zone monitoring, vehicle tracking crime.In this thesis, we conducted a study to recognize faces by detecting the areas of the face through a computer webcam. The purpose of this study was to contribute to the improvement in the accuracy of Recognition of Face Based on CNN Algorithms. For this purpose, We used data files provided by github to build a face recognition model. We also created data using CNN algorithms, which are widely used for image recognition. Various photos were learned by CNN algorithm. The study found that the accuracy of face recognition based on CNN algorithms was 77%. Based on the results of the study, We carried out recognition of the face according to the distance. Research findings may be useful if face recognition is required in a variety of situations. Research based on this study is also expected to improve the accuracy of face recognition.

Study on the Surface Defect Classification of Al 6061 Extruded Material By Using CNN-Based Algorithms (CNN을 이용한 Al 6061 압출재의 표면 결함 분류 연구)

  • Kim, S.B.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.229-239
    • /
    • 2022
  • Convolution Neural Network(CNN) is a class of deep learning algorithms and can be used for image analysis. In particular, it has excellent performance in finding the pattern of images. Therefore, CNN is commonly applied for recognizing, learning and classifying images. In this study, the surface defect classification performance of Al 6061 extruded material using CNN-based algorithms were compared and evaluated. First, the data collection criteria were suggested and a total of 2,024 datasets were prepared. And they were randomly classified into 1,417 learning data and 607 evaluation data. After that, the size and quality of the training data set were improved using data augmentation techniques to increase the performance of deep learning. The CNN-based algorithms used in this study were VGGNet-16, VGGNet-19, ResNet-50 and DenseNet-121. The evaluation of the defect classification performance was made by comparing the accuracy, loss, and learning speed using verification data. The DenseNet-121 algorithm showed better performance than other algorithms with an accuracy of 99.13% and a loss value of 0.037. This was due to the structural characteristics of the DenseNet model, and the information loss was reduced by acquiring information from all previous layers for image identification in this algorithm. Based on the above results, the possibility of machine vision application of CNN-based model for the surface defect classification of Al extruded materials was also discussed.

Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

  • Faizan Ullah;Muhammad Nadeem;Mohammad Abrar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.105-125
    • /
    • 2024
  • Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.

Comparison of Region-based CNN Methods for Defects Detection on Metal Surface (금속 표면의 결함 검출을 위한 영역 기반 CNN 기법 비교)

  • Lee, Minki;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.865-870
    • /
    • 2018
  • A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.

A Real-Time Hardware Design of CNN for Vehicle Detection (차량 검출용 CNN 분류기의 실시간 처리를 위한 하드웨어 설계)

  • Bang, Ji-Won;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.351-360
    • /
    • 2016
  • Recently, machine learning algorithms, especially deep learning-based algorithms, have been receiving attention due to its high classification performance. Among the algorithms, Convolutional Neural Network(CNN) is known to be efficient for image processing tasks used for Advanced Driver Assistance Systems(ADAS). However, it is difficult to achieve real-time processing for CNN in vehicle embedded software environment due to the repeated operations contained in each layer of CNN. In this paper, we propose a hardware accelerator which enhances the execution time of CNN by parallelizing the repeated operations such as convolution. Xilinx ZC706 evaluation board is used to verify the performance of the proposed accelerator. For $36{\times}36$ input images, the hardware execution time of CNN is 2.812ms in 100MHz clock frequency and shows that our hardware can be executed in real-time.

A Hybrid Learning Model to Detect Morphed Images

  • Kumari, Noble;Mohapatra, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.364-373
    • /
    • 2022
  • Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.

Performance evaluation of CNN-based in-loop filter for HEVC (CNN 기반 HEVC 루프 필터의 성능 비교)

  • Lee, So Yoon;Hong, Jin Hyung;Oh, Byung Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.74-76
    • /
    • 2017
  • In this paper, we introduce the CNN-based in-loop technology for HEVC, and analyze the performance of these algorithms through comparative experiments. The current in-loop filters in HEVC are composed of a deblocking filter that removes noise and a sample adaptive offset filter that compensates for signal offsets. A couple of CNN-based filters replacing the roles of these two algorithms are selected and compared.

  • PDF

Object Tracking Method using Deep Learning and Kalman Filter (딥 러닝 및 칼만 필터를 이용한 객체 추적 방법)

  • Kim, Gicheol;Son, Sohee;Kim, Minseop;Jeon, Jinwoo;Lee, Injae;Cha, Jihun;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.495-505
    • /
    • 2019
  • Typical algorithms of deep learning include CNN(Convolutional Neural Networks), which are mainly used for image recognition, and RNN(Recurrent Neural Networks), which are used mainly for speech recognition and natural language processing. Among them, CNN is able to learn from filters that generate feature maps with algorithms that automatically learn features from data, making it mainstream with excellent performance in image recognition. Since then, various algorithms such as R-CNN and others have appeared in object detection to improve performance of CNN, and algorithms such as YOLO(You Only Look Once) and SSD(Single Shot Multi-box Detector) have been proposed recently. However, since these deep learning-based detection algorithms determine the success of the detection in the still images, stable object tracking and detection in the video requires separate tracking capabilities. Therefore, this paper proposes a method of combining Kalman filters into deep learning-based detection networks for improved object tracking and detection performance in the video. The detection network used YOLO v2, which is capable of real-time processing, and the proposed method resulted in 7.7% IoU performance improvement over the existing YOLO v2 network and 20 fps processing speed in FHD images.

Centroid Neural Network with Bhattacharyya Kernel (Bhattacharyya 커널을 적용한 Centroid Neural Network)

  • Lee, Song-Jae;Park, Dong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.861-866
    • /
    • 2007
  • A clustering algorithm for Gaussian Probability Distribution Function (GPDF) data called Centroid Neural Network with a Bhattacharyya Kernel (BK-CNN) is proposed in this paper. The proposed BK-CNN is based on the unsupervised competitive Centroid Neural Network (CNN) and employs a kernel method for data projection. The kernel method adopted in the proposed BK-CNN is used to project data from the low dimensional input feature space into higher dimensional feature space so as the nonlinear problems associated with input space can be solved linearly in the feature space. In order to cluster the GPDF data, the Bhattacharyya kernel is used to measure the distance between two probability distributions for data projection. With the incorporation of the kernel method, the proposed BK-CNN is capable of dealing with nonlinear separation boundaries and can successfully allocate more code vector in the region that GPDF data are densely distributed. When applied to GPDF data in an image classification probleml, the experiment results show that the proposed BK-CNN algorithm gives 1.7%-4.3% improvements in average classification accuracy over other conventional algorithm such as k-means, Self-Organizing Map (SOM) and CNN algorithms with a Bhattacharyya distance, classed as Bk-Means, B-SOM, B-CNN algorithms.