• Title/Summary/Keyword: CMOS inverter

Search Result 127, Processing Time 0.026 seconds

Design of High Gain Low Noise Amplifier (2.4GHz 고이득 저잡음 증폭기 설계)

  • 손주호;최석우;윤창훈;김동용
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.309-312
    • /
    • 2002
  • In this paper, we discuss the design of high gain low noise amplifier by using the 0.2sum CMOS technology. A cascode inverter is adopted to implement the low noise amplifier. The proposed cascode inverter LNA is one stage amplifier with a voltage reference and without choke inductors. The designed 2.4GHz LNA achieves a power gain of 25dB, a noise figure of 2.2dB, and power consumption of 255㎽ at 2.5V power supply.

  • PDF

Characteristics of Neuron-MOSFET for the implementation of logic circuits (논리 회로 구현을 위한 neuron-MOSFET 특성)

  • 김세환;유종근;정운달;박종태
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.247-250
    • /
    • 1999
  • This paper presents characteristics of neuron-MOSFET for the implementation of logic circuits such at the inverter and D/A converter. Neuron-MOSFETS were fabricated using double poly CMOS process. From the measured results, it was found that noise margin of the inverter was dependant on the coupling ratio and a complete D/A characteristics of the source follower could be obtained by using any input Sate as a control gate.

  • PDF

Mixed mode exciting resonant inverter and control IC applicable to high Performance electronic ballast (고성능 전자식 안정기에 적합한 공진형 인버터의 혼합형 구동방식과 제어 IC)

  • Ryoo, Tae-Ha;Chae, Gyun;Hwang, Jong-Tae;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2786-2788
    • /
    • 1999
  • In this paper, a mixed mode exciting resonant inverter topology applicable to high performance electronic ballast is presented. Mixed mode exciting technique combines the attractive features of self exciting resonant inverter with those of external exciting one. The control IC is designed and manufactured by using a 0.8um CMOS process for 5V operation and has only 8 pins. This performs the operations of filament preheating, dimming control, output power regulation and protections. The mixed mode exciting resonant inverter with control IC has very simple structure, high performance and expensive manufacturing cost.

  • PDF

Design of a TIQ Based CMOS A/D Converter for Real Time DSP (실시간 디지털 신호처리를 위한 TIQ A/D 변환기 설계)

  • Kim, Jong-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • This paper presents a CMOS TIQ flash A/D converter which operates very fast compared to other types of A/D converters due to its parallel architecture. The output resolution of designed A/D converter is 6-bit. In order to reduce the power consumption and chip area of conventional flash A/D converter, TIQ based flash A/D converter is proposed, which uses the advantage of the structure of CMOS transistors. The length and width of transistors of TIQ were determined with HSPICE simulation. To speed up the ultra-high speed flash A/D converter, the Fat Tree Encoder technique is used. The TIQ A/D converter was designed with full custom method. The chip's maximum power consumption was 38.45mW at 1.8V, and the operating speed of simulation was 2.7 GSPS.

  • PDF

DTMOS Schmitt Trigger Logic Performance Validation Using Standard CMOS Process for EM Immunity Enhancement (범용 CMOS 공정을 사용한 DTMOS 슈미트 트리거 로직의 구현을 통한 EM Immunity 향상 검증)

  • Park, SangHyeok;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.917-925
    • /
    • 2016
  • Schmitt Trigger logic is a gate level design method to have hysteresis characteristics to improve noise immunity in digital circuits. Dynamic Threshold voltage MOS(DTMOS) Schmitt trigger circuits can improve noise immunity without adding additional transistors but by controlling substrate bias. The performance of DTMOS Schmitt trigger logic has not been verified yet in standard CMOS process through measurement. In this paper, DTMOS Schmitt trigger logic was implemented and verified using Magna $0.18{\mu}m$ MPW process. DTMOS Schmitt trigger buffer, inverter, NAND, NOR and simple digital logic circuits were made for our verification. Hysteresis characteristics, power consumption, and delay were measured and compared with common CMOS logic gates. EM Immunity enhancement was verified through Direct Power Injection(DPI) noise immunity test method. DTMOS Schmitt trigger logics fabricated using CMOS process showed a significantly improved EM Immunity in 10 M~1 GHz frequency range.

Demonstration of CSRZ Signal Generator Using Single-Stage Mach-Zehnder Modulator and Wideband CMOS Signal Mixer

  • Kang, Sae-Kyoung;Lee, Dong-Soo;Cho, Hyun-Woo;Ko, Je-Soo
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.249-254
    • /
    • 2008
  • In this paper, we demonstrate an electrically band-limited carrier-suppressed return-to-zero (EB-CSRZ) signal generator operating up to a 10 Gbps data rate comprising a single-stage Mach-Zehnder modulator and a wideband signal mixer. The wideband signal mixer comprises inverter stages, a mixing stage, and a gain amplifier. It is implemented by using a 0.13 ${\mu}m$ CMOS technology. Its transmission response shows a frequency range from DC to 6.4 GHz, and the isolation response between data and clock signals is about 21 dB at 6.4 GHz. Experimental results show optical spectral narrowing due to incorporating an electrical band-limiting filter and some waveform distortion due to bandwidth limitation by the filter. At 10 Gbps transmission, the chromatic dispersion tolerance of the EB-CSRZ signal is better than that of NRZ-modulated signal in single-mode fiber.

  • PDF

무전해 식각법으로 합성된 Si 나노와이어를 이용한 CMOS 인버터

  • Mun, Gyeong-Ju;Lee, Tae-Il;Lee, Sang-Hun;Hwang, Seong-Hwan;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.22.2-22.2
    • /
    • 2011
  • Si 나노와이어를 합성하는 다양한 방법들 중에서 Si 기판을 나노와이어 형태로 제작하는 무전해 식각법은 쉽고 간단하기 때문에 최근 많은 연구가 진행되고 있다. 무전해 식각법을 이용한 Si 나노와이어는 p 또는 n형의 전기적 특성을 갖는 Si 기판의 도핑농도에 따라 원하는 전기적 특성을 갖는 나노와이어를 얻을 수 있을 것이라는 기대가 있었지만 n형으로 제작된 나노와이어의 경우 식각에 의한 표면의 거칠기 때문에 그 특성을 나타내지 못하는 문제점을 가지고 있다. 본 연구에서는 무전해 식각법을 이용하여 p와 n형 나노와이어를 합성하고 field-effect transistors (FETs) 소자를 제작하여 각각의 특성을 구현하였다. 나노와이어와 절연막 사이의 계면 결함을 최소화하기 위하여 poly-4-vinylphenol (PVP) 고분자 절연막에 나노와이어를 삽입시킨 형태로 소자를 제작하였고, 특히 n형 나노와이어의 표면을 보다 평평하게 하기 위하여 열처리를 진행 하였다. 이렇게 각각의 특성이 구현된 나노와이어를 이용하여 soft-lithography 공정을 통해 complementary metal-oxide semiconductor (CMOS) 구조의 인버터 소자를 제작하였으며 그 전기적 특성을 평가하였다.

  • PDF

A $3{\mu}m$ Standard Cell Library Implemented in Single Poly Double Metal CMOS Technology ($3{\mu}m$ 설계 칫수의 이중금속 CMOS 기술을 이용한 표준셀 라이브러리)

  • Park, Jon Hoon;Park, Chun Seon;Kim, Bong Yul;Lee, Moon Key
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.254-259
    • /
    • 1987
  • This paper describes the CMOS standard cell library implemented in double metal single poly gate process with 3\ulcornerm design rule, and its results of testing. This standard cell library contains total 33 cells of random logic gates, flip-flop gates and input/output buffers. All of cell was made to have the equal height of 98\ulcornerm, and width in multiple constant grid of 9 \ulcornerm. For cell data base, the electric characteristics of each cell is investigated and delay is characterized in terms of fanout. As the testing results of Ring Oscillator among the cell library, the average delay time for Inverter is 1.05 (ns), and the delay time due to channel routing metal is 0.65(ps)per unit length.

  • PDF

Nonvolatile Ferroelectric Memory Devices Based on Black Phosphorus Nanosheet Field-Effect Transistors

  • Lee, Hyo-Seon;Lee, Yun-Jae;Ham, So-Ra;Lee, Yeong-Taek;Hwang, Do-Gyeong;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.281.2-281.2
    • /
    • 2016
  • Two-dimensional van der Waals (2D vdWs) materials have been extensively studied for future electronics and materials sciences due to their unique properties. Among them, black phosphorous (BP) has shown infinite potential for various device applications because of its high mobility and direct narrow band gap (~0.3 eV). In this work, we demonstrate a few-nm thick BP-based nonvolatile memory devices with an well-known poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] ferroelectric polymer gate insulator. Our BP ferroelectric memory devices show the highest linear mobility value of $1159cm^2/Vs$ with a $10^3$ on/off current ratio in our knowledge. Moreover, we successfully fabricate the ferroelectric complementary metal-oxide-semiconductor (CMOS) memory inverter circuits, combined with an n-type $MoS_2$ nanosheet transistor. Our memory CMOS inverter circuits show clear memory properties with a high output voltage memory efficiency of 95%. We thus conclude that the results of our ferroelectric memory devices exhibit promising perspectives for the future of 2D nanoelectronics and material science. More and advanced details will be discussed in the meeting.

  • PDF

Design of a Low-Power Parallel Multiplier Using Low-Swing Technique (저 전압 스윙 기술을 이용한 저 전력 병렬 곱셈기 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.14A no.3 s.107
    • /
    • pp.147-150
    • /
    • 2007
  • This paper describes a new low-swing inverter for low power consumption. To reduce a power consumption, an output voltage swing is in the range from 0 to VDD-2VTH. This can be done by the inverter structure that allow a full swing or a swing on its input terminal without leakage current. Using this low-swing voltage technology, we proposed a low-power 16$\times$16 bit parallel multiplier. The proposed circuits are designed with Samsung 0.35$\mu$m standard CMOS process at a 3.3V supply voltage. The validity and effectiveness are verified through the HSPICE simulation.. Compared to the previous works, this circuit can reduce the power consumption rate of 17.3% and the power-delay product of 16.5%.