• Title/Summary/Keyword: CMOS digital circuit

Search Result 277, Processing Time 0.031 seconds

Machine learning-based design automation of CMOS analog circuits using SCA-mGWO algorithm

  • Vijaya Babu, E;Syamala, Y
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.837-848
    • /
    • 2022
  • Analog circuit design is comparatively more complex than its digital counterpart due to its nonlinearity and low level of abstraction. This study proposes a novel low-level hybrid of the sine-cosine algorithm (SCA) and modified grey-wolf optimization (mGWO) algorithm for machine learning-based design automation of CMOS analog circuits using an all-CMOS voltage reference circuit in 40-nm standard process. The optimization algorithm's efficiency is further tested using classical functions, showing that it outperforms other competing algorithms. The objective of the optimization is to minimize the variation and power usage, while satisfying all the design limitations. Through the interchange of scripts for information exchange between two environments, the SCA-mGWO algorithm is implemented and simultaneously simulated. The results show the robustness of analog circuit design generated using the SCA-mGWO algorithm, over various corners, resulting in a percentage variation of 0.85%. Monte Carlo analysis is also performed on the presented analog circuit for output voltage and percentage variation resulting in significantly low mean and standard deviation.

Design of Voltage Controlled Oscillator Using the BiCMOS (BiCMOS를 사용한 전압 제어 발진기의 설계)

  • Lee, Yong-Hui;Ryu, Gi-Han;Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.83-91
    • /
    • 1990
  • VOC(coltage controlled oscillator) circuits are necessary in applications such at the demodul-ation of FM signals, frequency synthesizer, and for clock recovery from digital data. In this paper, we designed the VCO circuit based on a OTA(operational transconductance amplifier) and the OP amp which using a differential amplifier by BiCMOS circuit. It consists of a OTA, voltage contorolled integrator and a schmitt trigger. Conventional VCO circuits are designed using the CMOS circuit, but in this paper we designed newly BiCMOS VCO circuit which has a good drive avlity, As a result of SPICE simulation, output frequency is 141KHz at 105KHz, and sensitivity is 15KHz.

  • PDF

Design of Counter Circuit for Improving Precision in Distance Measuring System (거리 측정 시스템의 정밀도 향상을 위한 카운터 회로의 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.885-890
    • /
    • 2020
  • In the distance measurement system the time-to-digital conversion circuit used measures the distance using the time interval between the start signal and the stop signal. The time interval is generally converted to digital information using a counter circuit considering the response speed. Therefore, a clock signal with a high frequency is required to improve precision, and a clock signal with a high frequency is also required to measure fine distances. In this paper, a counter circuit was designed to increase the accuracy of distance measurement while using the same frequency. The circuit design was performed using a 0.18㎛ CMOS process technology, and the operation of the designed circuit was confirmed through HSPICE simulation. As a result of the simulation, it is possible to obtain an improvement of four times the precision compared to the case of using a general counter circuit.

Multi-Gbit/s Digital I/O Interface Based on RF-Modulation and Capacitive Coupling

  • Shin, Hyunchol
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.56-62
    • /
    • 2004
  • We present a multi-Gbit/s digital I/O interface based on RF-modulation and capacitive-coupling over an impedance matched transmission line. The RF-interconnect(RFI) can greatly reduce the digital switching noise and eliminate the dc power dissipation over the channel. It also enables reduced signal amplitude(as low as 200 ㎷) with enhanced data rate and affordable circuit overhead. This paper addresses the system advantages and implementation issues of RFI. A prototype on-chip RFI transceiver is implemented in 0.18-${\mu}{\textrm}{m}$ CMOS. It demonstrates a maximum data rate of 2.2 Gbit/s via 10.5-㎓ RF-modulation. The RFI can be very instrumental for future high-speed inter- and intra-ULSI data links.

Design of a 6-bit 500MS/s CMOS A/D Converter with Comparator-based Input Voltage Range Detection Circuit

  • Dae, Si;Yoon, Kwang Sub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.706-711
    • /
    • 2014
  • A low power 6-bit flash ADC that uses an input voltage range detection algorithm is described. An input voltage level detector circuit has been designed to overcome the disadvantages of the flash ADC which consume most of the dynamic power dissipation due to comparators array. In this work, four digital input voltage range detectors are employed and each input voltage range detector generates the specific clock signal only if the input voltage falls between two adjacent reference voltages applied to the detector. The specific clock signal generated by the detector is applied to turn the corresponding latched comparators on and the rest of the comparators off. This ADC consumes 68.82 mW with a single power supply of 1.2V and achieves 4.3 effective number of bits for input frequency up to 1 MHz at 500 MS/s. Therefore it results in 4.6 pJ/step of Figure of Merit (FoM). The chip is fabricated in 0.13-um CMOS process.

A high-speed algorithmic ADC based on Maximum Circuit

  • Chaikla, Amphawan;Pukkalanun, Tattaya;Riewruja, Vanchai;Wangwiwattana, Chaleompun;Masuchun, Ruedee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.73-77
    • /
    • 2003
  • This paper presents a high-speed algorithmic analog-to-digital converter (ADC), which is based on gray coding. The realization method makes use of a two-input maximum circuit to provide a high-speed operation and a low-distortion in the transfer characteristic. The proposed ADC based on the CMOS integrated circuit technique is simple and suitable for implementing a highresolution ADC. The performances of the proposed circuit were studied using the PSPICE analog simulation program. The simulation-results verifying the circuit performances are agreed with the expected values.

  • PDF

A VLSI-CMOS Programmable Membership Function Circuit: The Basic Block of Fuzzy Processing

  • Ruiz, Antonio;Gutierrez, Julio
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.977.2-980
    • /
    • 1993
  • The fuzzifier circuit DPFC 7 is presented. Its features are: programmable membership function, CMOS digital interface, analog and current mode internal processing and integrability without external components. It has been designed to obtain a basic efficient block for fuzzy processing, to be included in a future architecture.

  • PDF

A Variable Hysteresis Comparator Circuit Controlled by Serial Digital Bits Against Jamming (교란 방어를 위하여 히스테리시스가 시리얼로 제어되는 가변 비교기 회로)

  • Kim, Young-Gi
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • In order to overcome jamming, a hysteresis tunable monolithic comparator circuit based on a 0.35 ${\mu}m$ CMOS process is suggested, designed, fabricated, measured and analyzed in this paper. To tune the threshold voltage of the hysteresis in the comparator circuit, two external digital bits are used with supply voltage of 3.3V. An improved variable hysteresis comparator circuit controlled by serial digital bits is suggested, designed and simulated to overcome jamming in modern warfare.

Design of Digital PLL using Binary Phase-Frequency Detector and Counter for Digital Phase Detection (이진 위상-주파수 검출기와 카운터를 이용한 디지털 위상 고정 루프 회로 설계)

  • Han, Jong-Seok;Yoon, Kwan;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.322-327
    • /
    • 2012
  • In this paper, a digital phase-locked loop(Digital-PLL) circuit with a new phase-to-digital converter(P2D) is described. The proposed digital PLL is composed a P2D, a digital loop filter(DLF), and a digitally controlled oscillator(DCO). The P2D generates a digital code for a phase error. The proposed P2D used a binary phase frequency detector(BPFD) and a counter in place of a time-to-digital converter(TDC) for simple structure, compact area and low power consumption. The proposed circuit was designed with CMOS 0.18um process. The simulation shows the circuit operates with the 1.0 to 2.2GHz with the power consumption of 16.2mW at 1.65GHz and the circuit occupies the chip area of $0.096mm^2$.

High Speed, High Resolution CMOS Sample and Hold Circuit (고속, 고해상도 CMOS 샘플 앤 홀드 회로)

  • Kim Won-Youn;Park Kong-Soon;Park Sang-Wook;Yoon Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.545-548
    • /
    • 2004
  • The paper describes the design of high-speed, high-resolution Sample-and-Hold circuit which shows the conversion rate 80MHz and the power supply of 3.3v with 0.35um CMOS 2-poly 4-metal process for high-speed, high resolution Analog-to-Digital Converter. For improving Dynamic performance of Sample-and-Hold, Two Double bootstrap switch and high performance operational amplifier with gain booster, which are used. and For physical stability of Sample and Hold circuit, reduces excess voltage of gate in bootstrap switch. Simulation results using HSPICE shows the SFDR of 71dB, 75dB in conversion rate of 80MHz result for two inputs(0.5Vpp, 10MHz and 1Vpp, 10MHz) and the power dissipation of 48mW at single 3.3V supply voltage.

  • PDF