• Title/Summary/Keyword: CMOS circuit

Search Result 1,515, Processing Time 0.044 seconds

Design of MYNAMIC CMOS ARRAY LOGIC (DYNAMIC CMOS ARRAY LOGIC의 설계)

  • 한석붕;임인칠
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1606-1616
    • /
    • 1989
  • In this paper, the design of DYNAMIC CMOS ARRAY LOGIC which has both advantages of dynamic CMOS and array logic circuits is proposed. The major components of DYNAMIC CMOS ARRAY LOGIC are two-stage dunamic CMOS circuits and an internal clock generator. The function block of dynamic CMOS circuits is realized as a parallel interconnection of NMOS transistors. Therefore the operating speed of DYNAMIC CMOS ARRAY LOGIC is much faster than the one of the conventional dynamic CMOS PLAs and static CMOS PLA. Also, the charge redistribution problem by internl delay is solved. The internal clock generator generates four internal clocks that drive all the dynamic CMOS circuits. During evaluation, two clocks of them are delayed as compared with others. Therefore the race problem is completoly eliminated. The internal clock generator also prevents the reduction of circuit output voltage and noise margin due to leakage current and charge coupling without any penalty in circuit operating speed or chip area utilization.

  • PDF

The Design of SCF CMOS OP AMP (SCF용 CMOS OP AMP의 설계)

  • Cho, Seong-Ik;Kim, Seok-Ho;Kim, Dong-Yong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.118-123
    • /
    • 1989
  • In this paper, as we have integrated SCF for voice signal processing using CMOS circuit with the low power dissipation and the easy circuit design, it has been presented the simplified CMOS OP AMP design method with ${\pm}$5V pwoer source in order to use together with digital part. After an example about SCF CMOS OP AMP design, it has been performed layout appling channel width and length obtained by design method, and then its characteristics were simulated by SPICE 2G program. Therefoe, this design method will be applied the general CMOS OP AMP design in the electronic circuit.

  • PDF

CMOS Current Sum/Subtract Circuit

  • Parnklang, Jirawath;Manasaprom, Ampual
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.108.6-108
    • /
    • 2001
  • The basic circuit block diagram of CMOS current mode sum and subtract circuit is present in this paper. The purpose circuit consists of the invert current circuit and the basic current mirror. The outputs of the circuit are the summing of the both input current [lx+ly] and also the subtract of the both input current [lx+(-ly)]. The SPICE simulation results of the electrical characteristics with level 7 (BSIM3 model version 3.1) MOSFET transistor model of the circuit such as the input dynamic range, the frequency response and some system application have been shown and analyzed.

  • PDF

Design of Low Power Capacitive Sensing Circuit with a High Resolution in CMOS Technology

  • Jung, Seung-Min
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.301-304
    • /
    • 2011
  • This paper describes the possibility of a low-power, high-resolution fingerprint sensor chip. A modified capacitive detection circuit of charge sharing scheme is proposed, which reduces the static power dissipation and increases the voltage difference between a ridge and valley more than conventional circuit. The detection circuit is designed and simulated in 3.3V, 0.35${\mu}$m standard CMOS process, 40MHz condition. The result shows about 27% power dissipation reduction and 90% improvement of difference between a ridge and valley sensing voltage. The proposed circuit is more stable and effective than a typical circuit.

ESD damage mechanism of CMOS DRAM internal circuit and improvement of input protection circuit (정전기에 의한 CMOS DRAM 내부 회오의 파괴 Mechanism과 입력 보호 회로의 개선)

  • 이호재;오춘식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.64-70
    • /
    • 1994
  • In this paper, we inverstigated how a parricular internal inverter circuit, which is located far from the input protection in CMOS DRAM, can be easily damaged by external ESD stress, while the protection circuit remains intact. It is shown in a mega bit DRAM that the internal circuit can be safe from ESD by simply improving the input protection circuit. An inverter, which consists of a relatively small NMOSFET and a very large PMOSFET, is used to speed up DRAMs, and the small NMOSFET is vulnerable to ESD in case that the discharge current beyond the protection flows through the inverter to Vss or Vcc power lines on chip. This internal circuit damage can not be detected by only measuring input leakage currents, but by comparing the standby and on operating current before and after ESD stressing. It was esperimentally proven that the placement of parasitic bipolar transistor between input pad and power supply is very effective for ESD immunity.

  • PDF

MASK ROM IP Design Using Printed CMOS Process Technology (Printed CMOS 공정기술을 이용한 MASK ROM 설계)

  • Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.788-791
    • /
    • 2010
  • We design 64-bit ROM IP for RFID tag chips using printed CMOS non-volatile memory IP design technology for a printed CMOS process. The proposed 64-bit ROM circuit is using ETRI's $0.8{\mu}m$ CMOS porocess, and is expected to reduce process complexity and cost of RFID tag chips compared to that using a conventional silicon fabrication based on a complex lithography process because the poly layer in a gate terminal is using printing technology of imprint process. And a BL precharge circuit and a BL sense amplifier is not required for the designed cell circuit since it is composed of a transmission gate instead of an NMOS transistor of the conventional ROM circuit. Therefore an output datum is only driven by a DOUT buffer circuit. The Operation current and layout area of the designed ROM of 64 bits with an array of 8 rows and 8 columns using $0.8{\mu}m$ ROM process is $9.86{\mu}A$ and $379.6{\times}418.7{\mu}m^2$.

  • PDF

The Design of a Frequency Automatic Tuning Circuit based on Current Comparative Methods for CMOS gm-C Bandpass Filters (CMOS gm-C 대역통과 필터를 위한 전류 비교형 주파수 자동동조 회로 설계)

  • 송의남
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.29-34
    • /
    • 1999
  • In this paper, a current comparative frequency automatic tuning circuit for the CMOS gm-C bandpass filters are designed with the new architecture. And also, when the designed circuit is compared to the typical tuning circuit, the designed circuit has very simple architecture that is composed of the current comparator and charge pump and operating in 3V power supply. The proposed tuning circuit automatically compensates the difference between the operating current of the transconductor and the specified reference Current. Using CMOS 0.8um parameter a biquad gm-C bandpass filter with center frequency($f_\circ$=60MHz) is designed, and according to the transistor size the variation of the center frequency is simulated. As the HSPICE simulation results, the tuning operation of the proposed current comparative frequency automatic tuning circuit is verified.

  • PDF

A CMOS Switched-Capacitor Interface Circuit for MEMS Capacitive Sensors (MEMS 용량형 센서를 위한 CMOS 스위치드-커패시터 인터페이스 회로)

  • Ju, Min-sik;Jeong, Baek-ryong;Choi, Se-young;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.569-572
    • /
    • 2014
  • This paper presents a CMOS switched-capacitor interface circuit for MEMS capacitive sensors. It consist of a capacitance to voltage converter(CVC), a second-order ${\Sigma}{\Delta}$ modulator, and a comparator. A bias circuit is also designed to supply constant bias voltages and currents. This circuit employes the correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques to reduce low-frequency noise and offset. The designed CVC has a sensitivity of 20.53mV/fF and linearity errors less than 0.036%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 5% as the input voltage amplitude increases by 100mV. The designed interface circuit shows linearity errors less than 0.13%, and the current consumption is 0.73mA. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V. The size of the designed chip including PADs is $1117um{\times}983um$.

  • PDF

Sub-One volt DC Power Supply Expandable 4-bit Adder/Subtracter System using Adiabatic Dynamic CMOS Logic Circuit Technology

  • Takahashi, Kazukiyo;Yokoyama, Michio;Shouno, Kazuhiro;Mizunuma, Mitsuru
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1543-1546
    • /
    • 2002
  • The expandable 4 bit adder/subtracter IC was designed using the adiabatic and dynamic CMOS logic (ADCL) circuit as the ultra-low power consumption basic logic circuit and the IC was fabricated using a standard 1.2 ${\mu}$ CMOS process. As the result the steady operation of 4 bit addition and subtraction has been confirmed even if the frequency of the sinusoidal supply voltage is higher than 10MHz. Additionally, by the simulation, at the frequency of 10MHz, energy consumption per operation is obtained as 93.67pJ (ar addition and as 118.67pJ for subtraction, respectively. Each energy is about 1110 in comparison with the case in which the conventional CMOS logic circuit is used. A simple and low power oscillation circuit is also proposed as the power supply circuit f3r the ADCL circuit. The oscillator operates with a less one volt of DC supply voltage and around one milli-watts power dissipation.

  • PDF

A 1.5V-25MHz symmetric feedback current enhancement continuous-time current-mode CMOS filter (1.5V-25MHz 대칭적 귀환전류 증가형 연속시간 전류 구동 CMOS 필터)

  • 장진영;윤광섭
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.514-517
    • /
    • 1998
  • This paper proposed a symmetric feedback current enhancement circuit with 1.5V power supply to design a 3$^{rd}$ order butterworth low pass filter. The proposed filter designed on 0.8.mu.m CMOS n-well double poly/double metal process simulated in HSPICE composed of the 3dB frequency enhancement circuit and the unity-gain frequency enhancement circuit. The simulation result on the design filter shows the badnwith of 25MHz, phase of 92.6 .deg. and power consumption of 0.3mW..

  • PDF