• Title/Summary/Keyword: CMOS게이트

Search Result 368, Processing Time 0.023 seconds

IDDQ Test Pattern Generation in CMOS Circuits (CMOS 조합회로의 IDDQ 테스트패턴 생성)

  • 김강철;송근호;한석붕
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.235-244
    • /
    • 1999
  • This Paper proposes a new compaction algorithm for IDDQ testing in CMOS Circuits. A primary test pattern is generated by the primitive fault pattern which is able to detect GOS(gate-oxide short) and the bridging faults in an internal primitive gate. The new algorithm can reduce the number of the test vectors by decreasing the don't care(X) in the primary test pattern. The controllability of random number is used on processing of the backtrace together four ones of heuristics. The simulation results for the ISCAS-85 benchmark circuits show that the test vector reduction is more than 45% for the large circuits on the average compared to static compaction algorithms.

  • PDF

Design of an Analog Array using Enhancement of Electric Field on Floating Gate MOSFETs (부유게이트에 지역전계강화 효과를 이용한 아날로그 어레이 설계)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1227-1234
    • /
    • 2013
  • An analog array with a 1.2 double poly floating gate transistor has been developed with a standard CMOS fabrication process. The programming of each cell by means of an efficient control circuit eliminates the unnecessary erasing operation which has been widely used in conventional analog memories. It is seen that the path of the signal for both the programming and the reading is almost exactly the same since just one comparator supports both operations. It helps to eliminate the effects of the amplifier input-offset voltage problem on the output voltage for the read operation. In the array, there is no pass transistor isolating a cell of interest from the adjacent cells in the array. Instead of the extra transistors, one extra bias voltage, Vmid, is employed. The experimental results from the memory shows that the resolution of the memory is equivalent to the information content of at least six digital cells. Programming/erasing of each cell is achieved with no detectable disturbance of adjacent cells. Finally, the unique shape of the injector structure in a EEPROM is adopted as a cell of analog array. It reduces the programming voltage below the transistor breakdown voltage without any special fabrication process.

Design of Luma and Chroma Sub-pixel Interpolator for H.264 Motion Estimation (H.264 움직임 예측을 위한 Luma와 Chroma 부화소 보간기 설계)

  • Lee, Seon-Young;Cho, Kyeong-Soon
    • The KIPS Transactions:PartA
    • /
    • v.18A no.6
    • /
    • pp.249-254
    • /
    • 2011
  • This paper describes an efficient design of the interpolation circuit to generate the luma and chroma sub-pixels for H.264 motion estimation. The circuit based on the proposed architecture does not require any input data buffering and processes the horizontal, vertical and diagonal sub-pixel interpolations in parallel. The performance of the circuit is further improved by simultaneously processing the 1/2-pixel and 1/4-pixel interpolations for luma components and the 1/8-pixel interpolations for chroma components. In order to reduce the circuit size, we store the intermediate data required to process all the interpolations in parallel in the internal SRAM's instead of registers. We described the proposed circuit at register transfer level and verified its operation on FPGA board. We also synthesized the gate-level circuit using 130nm CMOS standard cell library. It consists of 20,674 gates and has the maximum operating frequency of 244MHz. The total number of SPSRAM bits used in our circuit is 3,232. The size of our circuit (including logic gates and SRAM's) is smaller than others and the performance is still comparable to them.

6-Gbps Single-ended Receiver with Continuous-time Linear Equalizer and Self-reference Generator (기준 전압 발생기와 연속 시간 선형 등화기를 가진 6 Gbps 단일 종단 수신기)

  • Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.54-61
    • /
    • 2016
  • A 6-Gbps single-ended receiver with a linear equalizer and a self-reference generator is proposed for a high-speed interface with the double data rate. The proposed single-ended receiver uses a common gate amplifier to increase a voltage gain for an input signal with low voltage level. The continuous-time linear equalizer which reduces gain to the low frequencies and achieves high-frequency peaking gain is implemented in the common gate amplifier. Furthermore, a self-reference generator, which is controlled with the resolution 2.1 mV using digital averaging method, is implemented to maximize the voltage margin by removing the offset noise of the common gate amplifier. The proposed single-ended receiver is designed using a 65-nm CMOS process with 1.2-V supply and consumes the power of 15 mW at the data rate of 6 Gbps. The peaking gain in the frequency of 3 GHz of the designed equalizer is more than 5 dB compared to that in the low frequency.

The Degradation Analysis of Characteristic Parameters by NBTI stress in p-MOS Transistor for High Speed (고속용 p-MOS 트랜지스터에서 NBTI 스트레스에 의한 특성 인자의 열화 분석)

  • Lee, Yong-Jae;Lee, Jong-Hyung;Han, Dae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.80-86
    • /
    • 2010
  • This work has been measured and analyzed the device degradation of NBTI (Negative Bias Temperature Instability) stress induced the increase of gate-induced-drain-leakage(GIDL) current for p-MOS transistors of gate channel length 0.13 [${\mu}m$]. From the relation between the variation of threshold voltage and subthreshold slop by NBTI stress, it has been found that the dominant mechanism for device degradation is the interface state generation. From the GIDL measurement results, we confined that the EHP generation in interface state due to NBTI stress led to the increase of GIDL current. As a results, one should take care of the increased GIDL current after NBTI stress in the ultra-thin gate oxide device. Also, the simultaneous consideration of reliability characteristics and dc device performance is highly necessary in the stress parameters of nanoscale CMOS communication circuit design.

A Design of Low-Power 8-bit Microcontroller (저전력 8-비트 마이크로콘트롤러의 설계)

  • Lee, Sang-Jae;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • This paper suggests a 8-bit RISC microcontroller, which has a 4-stage pipeline architecture. Many low-power design techniques that have been proposed by previous works are adopted into it. The proposed microcontroller consumes only 600㎼ per MIPS for 0.6 ${\mu}{\textrm}{m}$ CMOS process and even lower power of 70㎼ per MIPS for 0.25${\mu}{\textrm}{m}$ process. The RTL level design of this microcontroller is carried out using VHDL. The functional verification is thoroughly done at the gate level using 0.6${\mu}{\textrm}{m}$/0.25${\mu}{\textrm}{m}$ CMOS IDEC standard cell library. This microcontroller contains 7000 NAND gates on a 0.36$\textrm{mm}^2$ die using 0.25${\mu}{\textrm}{m}$ process. Finally the comparison of power consumption with other conventional microcontrollers is provided.

FGPA Design and SoC Implementation for Wireless PAN Applications (무선 PAN 응용을 위한 FPGA 설계 및 SoC)

  • Kim, Young-Sung;Kim, Sun-Hee;Hong, Dae-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.462-469
    • /
    • 2008
  • In this paper, we design the FPGA (Field-Programmable Gate Array) of the KOINONIA WPAN (Wireless Personal Area Network), and implement the SoC (System on Chip). We use the redundant bits to make a constant-amplitude in a modulator part. Additionally, the SNR (Signal to Noise Ratio) performance of the demodulator is improved by using the redundant bits in decoding steps. The four-million FPGA of the KOINONIA WPAN can be operated at 44MHz frequency. The PER (Packet Error Rate) of the designed FPGA with RF (Radio Frequency) module is below 1% at the -86dB MIPLS (Minimum Input Power Level Sensitivity), and the SNR is about 13dB. The SoC is implemented by using Hynix 0.25um CMOS (Complementary Metal Oxide Semiconductor) process. The size of the SoC is $6.52mm{\times}6.92mm$.

C-V Characteristics in Nanometer Scale MuGFETs with Considering Quantum Effects (양자 현상을 고려한 나노미터 스케일 MUGFETS의 C-V 특성)

  • Yun, Se-Re-Na;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.1-7
    • /
    • 2008
  • In this work, a two dimensional, self-consistent Poisson-$Schr{\ddot{o}}dinger$ solver has been implemented to study C-V characteristics in nanometer scale MuGFETs with considering quantum effects. The quantum-mechanical effects on gate-channel capacitance for different device dimension and gate configurations of nanometer scale MuGFETs have been analyzed. It has been found that 4he gate-channel capacitance per unit gate area is increased as the device dimension decreases. For different gate configurations, the gate-channel capacitance is decreased with increase of effective gate number. Those resu1ts have been explained by the distribution profile of electron concentration in the silicon surface and inversion capacitance. The length of inversion-layer centroid has been calculated from inversion capacitance with device dimension and gate configurations.

An Implemention of Low Power 16bit ELM Adder by Glitch Reduction (글리치 감소를 통한 저전력 16비트 ELM 덧셈기 구현)

  • 류범선;이기영;조태원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.5
    • /
    • pp.38-47
    • /
    • 1999
  • We have designed a 16bit adder which reduces the power consumption at each level of architecture, logic and transistor. The conventional ELM adder has a major disadvantage which makes glitch in the G cell when the particular input bit patterns are applied, because of the block carry generation signal computed by the input bit pattern. Thus, we propose a low power adder architecture which can automatically transfer each block carry generation signal to the G cell of the last level to avoid glitches for particular input bit patterns at the architecture level. We also use a combination of logic styles which is suitable for low power consumption with static CMOS and low power XOR gate at the logic level. Futhermore, The variable-sized cells are used for reduction of power consumption according to the logic depth of the bit propagation at the transistor level. As a result of HSPICE simulation with $0.6\mu\textrm{m}$ single-poly triple-metal LG CMOS standard process parameter, the proposed adder is superior to the conventional ELM architecture with fixed-sized cell and fully static CMOS by 23.6% in power consumption, 22.6% in power-delay-product, respectively.

  • PDF

A Design of CMOS Transceiver for noncoherent UWB Communication system (비동기방식 UWB통신용 CMOS 아날로그 송수신단의 설계)

  • Park, Jung-Wan;Moon, Yong;Choi, Sung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.71-78
    • /
    • 2005
  • In this paper, we propose a transceiver for noncoherent OOK(On-Off Keying) Ultra Wide Band system based on magnitude detection. The proposed transceiver are designed using 0.18 micron CMOS technology and verified by simulation using SPICE and measurement. The proposed transceiver consist of parallelizer, Analog-to-Digital converter, clock generator, PLL and impulse generator. The time resolution of 1ns is obtained with 125MHz system clocks and 8x parallelization is carried out. The synchronized eight outputs with 2-bit resolution are delivered to the baseband. Impulse generator produces 1ns width pulse using digital CMOS gates. The simulation results and measurement show the feasibility of the proposed transceiver for UWB communication system.