• Title/Summary/Keyword: CMOS게이트

Search Result 368, Processing Time 0.026 seconds

A Study on the Process & Device Characteristics of BICMOS Gate Array (BICMOS게이트 어레이 구성에 쓰이는 소자의 제작 및 특성에 관한 연구)

  • 박치선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.3
    • /
    • pp.189-196
    • /
    • 1989
  • In this paper, BICMOS gate array technology that has CMOS devices for logic applications and bipolar devices for driver applications is presented. An optimized poly gate p-well CMOS process is chosen to fabricate the BICMOS gate array system and the basic concepts to design these devices are to improve the characteristics of bipolar & CMOS device with simple process technology. As the results hFE value is 120(Ic=1mA) for transistor, and there is no short channel effects for CMOS devices which have Leff to 1.25um and 1.35um for n-channel, respectively, 0.8nx gate delay time of 41 stage ring oscillators is obtained.

  • PDF

Implementation of Logic Gates Using Organic Thin Film Transistor for Gate Driver of Flexible Organic Light-Emitting Diode Displays (유기 박막 트랜지스터를 이용한 유연한 디스플레이의 게이트 드라이버용 로직 게이트 구현)

  • Cho, Seung-Il;Mizukami, Makoto
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Flexible organic light-emitting diode (OLED) displays with organic thin-film transistors (OTFTs) backplanes have been studied. A gate driver is required to drive the OLED display. The gate driver is integrated into the panel to reduce the manufacturing cost of the display panel and to simplify the module structure using fabrication methods based on low-temperature, low-cost, and large-area printing processes. In this paper, pseudo complementary metal oxide semiconductor (CMOS) logic gates are implemented using OTFTs for the gate driver integrated in the flexible OLED display. The pseudo CMOS inverter and NAND gates are designed and fabricated on a flexible plastic substrate using inkjet-printed OTFTs and the same process as the display. Moreover, the operation of the logic gates is confirmed by measurement. The measurement results show that the pseudo CMOS inverter can operate at input signal frequencies up to 1 kHz, indicating the possibility of the gate driver being integrated in the flexible OLED display.

Maximum Power Dissipation Esitimation Model of CMOS digital Gates based on Characteristics of MOSFET (MOSFET 특성에 기초한 CMOS 디지털 게이트의 최대소모전력 예측모델)

  • Kim, Dong-Wook;Jung, Byung-Kweon
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.9
    • /
    • pp.54-65
    • /
    • 1999
  • As the integration ratio and operating speed increase, it has become an important problem to estimate the dissipated power during the design procedure to reduce th TTM(time to market). This paper proposed a prediction model for the maximum dissipated power of a CMOS logic gate. This model uses a calculating method. It was constructed by including the characteristics of MOSFETs, the operational characteristics of the gate, and the characteristics of the input signals. As the construction procedure, a maximum power estimation model for CMOS inverter was formed first, And then, a conversion model to convert a multiple input CMOS gate into a corresponding CMOS inverter was proposed. Finally, the power model for inverter was applied to the converted result so that the model could be applied to a general CMOS gate. We designed several CMOS gates in layout level with $0.6{\mu}m$ design rule to apply both to HSPICE simulation and to the proposed models. The comparison between the two results showed that the gate conversion model and the power estimation model had within 5% and 10% of the relative errors, respectively. Those values show that the proposed models have sufficient accuracies. Also in calculation time, the proposed models were more than 30 times faster than HSPICE simulation. Consequently, it can be said that the proposed model could be used efficiently to estimate the maximum dissipated power of a CMOS logic gate during the design procedure.

  • PDF

A Design of a Ternary Storage Elements Using CMOS Ternary Logic Gates (CMOS 3치 논리 게이트를 이용한 3치 저장 소자 설계)

  • Yoon, Byoung-Hee;Byun, Gi-Young;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.47-53
    • /
    • 2004
  • We present the design of ternary flip-flop which is based on ternary logic so as to process ternary data. These flip-flops are composed with ternary voltage mode NMAX, NMIN, INVERTER gates. These logic gate circuits are designed using CMOS and obtained the characteristics of a lower voltage, lower power consumption as compared to other gates. These circuits have been simulated with the electrical parameters of a standard 0.35um CMOS technology and 3.3Volts supply voltage. The architecture of proposed ternary flip-flop is highly modular and well suited for VLSI implementation, only using ternary gates.

  • PDF

An Analysis Technique for Interconnect Circuits with Multiple Driving Gates in Deep Submicron CMOS ASICs (Deep Submicron CMOS ASIC에서 다중 구동 게이트를 갖는 배선회로 해석 기법)

  • Cho, Kyeong-Soon;Byun, Young-Ki
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.59-68
    • /
    • 1999
  • The timing characteristics of an ASIC are analyzed based on the propagation delays of each gate and interconnect wire. The gate delay can be modeled using the two-dimensional delay table whose index variables are the input transition time and the output load capacitance. The AWE technique can be adopted as an algorithm to compute the interconnect delay. Since these delays are affected by the interaction to the two-dimensional delay table and the AWE technique. A method to model this effect has been proposed through the effective capacitance and the gate driver model under the assumption of single driving gate. This paper presents a new technique to handle the multiple CMOS gates driving interconnect wire by extending previous approach. This technique has been implemented in C language and applied to several interconnect circuits driven by multiple CMOS gates. In most cases, we found a few tens of speed-up and only a few percents of errors in computing both of gate and interconnect delays, compared to SPICE.

  • PDF

DTMOS Schmitt Trigger Logic Performance Validation Using Standard CMOS Process for EM Immunity Enhancement (범용 CMOS 공정을 사용한 DTMOS 슈미트 트리거 로직의 구현을 통한 EM Immunity 향상 검증)

  • Park, SangHyeok;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.917-925
    • /
    • 2016
  • Schmitt Trigger logic is a gate level design method to have hysteresis characteristics to improve noise immunity in digital circuits. Dynamic Threshold voltage MOS(DTMOS) Schmitt trigger circuits can improve noise immunity without adding additional transistors but by controlling substrate bias. The performance of DTMOS Schmitt trigger logic has not been verified yet in standard CMOS process through measurement. In this paper, DTMOS Schmitt trigger logic was implemented and verified using Magna $0.18{\mu}m$ MPW process. DTMOS Schmitt trigger buffer, inverter, NAND, NOR and simple digital logic circuits were made for our verification. Hysteresis characteristics, power consumption, and delay were measured and compared with common CMOS logic gates. EM Immunity enhancement was verified through Direct Power Injection(DPI) noise immunity test method. DTMOS Schmitt trigger logics fabricated using CMOS process showed a significantly improved EM Immunity in 10 M~1 GHz frequency range.

Analysis of the Gate Bias Effects of the Cascode Structure for Class-E CMOS Power Amplifier (CMOS Class-E 전력증폭기의 Cascode 구조에 대한 게이트바이어스 효과 분석)

  • Seo, Donghwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.435-443
    • /
    • 2017
  • In this study, we analyzed the effects of the common-gate transistor bias of a switching mode CMOS power amplifier. Although the most earier works occured on the transistor sizes of the cascode structure, we showed that the gate bias of the common-gate transistor also influences the overall efficiency of the power amplifier. To investigate the effect of the gate bias, we analyzed the DC power consumption according to the gate bias and hence the efficiency of the power amplifier. From the analyzed results, the optimized gate bias for the maximum efficiency is lower than the supply voltage of the power amplifier. We also found that an excessively low gate bias may degrade the output power and efficiency owing to the effects of the on-resistance of the cascode structure. To verify the analyzed results, we designed a 1.9 GHz switching mode power amplifier using $0.18{\mu}m$ RF CMOS technology. As predicted in the analysis, the maximum efficiency is obtained at 2.5 V, while the supply voltage of power amplifier is 3.3 V. The measured maximum efficiency is 31.5 % with an output power of 29.1 dBm. From the measureed results, we successfully verified the analysis.

Characterization and design guideline for neuron-MOSFET inverters (Neuron-MOSFET 인버터의 특성 분석 및 설계 가이드라인)

  • Kim, Sea-W.;Lee, Jae-K.;Park, Jong-T.;Jeong, Woon-D.
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.161-167
    • /
    • 1999
  • 3-input neuron-MOSFET inverters and 3-bit D/A converters using enhancement type device have been designed and fabricated by using standard 2-poly CMOS process. The voltage transfer curve and the noise margin of neuron-MOSFET inverters have been measured and characterized as the same method in normal CMOS inverters. From the theoretical calculation of the effects of coupling ratio on the voltage transfer curve and noise margin, we set up the design guideline for the gate oxide thickness and input gate layout in neuron-MOSFET inverters. BT using one of input gates as a control gate, we can design and fabricate the neuron-MOSFET D/A converter without offset voltage.

  • PDF

Design Method of Current Mode Logic Gates for High Performance LTPS TFT Digital Circuits (LTPS TFT 논리회로 성능향상을 위한 전류모드 논리게이트의 설계 방법)

  • Lee, J.C.;Jeong, J.Y.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.54-58
    • /
    • 2007
  • Development of high performance LTPS TFTs contributed to open up new SOP technology with various digital circuits integrated in display panels. This work introduces the current mode logic(CML) gate design method with which one can replace slow CMOS logic gates. The CML inverter exhibited small logic swing, fast response with high power consumption. But the power consumption became compatible with CMOS gates at higher clock speed. Due to small current values in CML, layout area is smaller than the CMOS counterpart even though CML uses larger number of devices. CML exhibited higher noise immunity thanks to its non-inverting and inverting outputs. Multi-input NAND/AND and NOR/OR gates were implemented by the same circuit architecture with different input confirugation. Same holds for MUX and XNOR/XOR CML gates. We concluded that the CML gates can be designed with few simple circuits and they can improve power consumption, chip area, and speed of operation.