• Title/Summary/Keyword: CIP method

Search Result 126, Processing Time 0.024 seconds

Microstructure of the (Nd/Y)-Ba-Cu-O superconductors by floating zone melt growth process (부유대역용융성장법을 이용한 (Nd/Y)-Ba-Cu-O계 초전도체의 미세구조)

  • 김소정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.83-87
    • /
    • 2003
  • $(Nd/Y)_{1.8}Ba_{}2.4Cu_{3.4}O_{7-x}$high $T_c$ superconductor was directionally grown by floating Bone melt growth process with a large temperature gradient in air. Cylindrical green rods of (Nd/Y)1.8 oxides were fabricated by cold isostatic pressing (CIP) method using rubber mold. Microstructures were observed by SEM and TEM and superconducting properties were measured by a SQUID magnetometer. Nonsuperconducting $(Nd/Y)_2BaCuO_5$ inclusions were uniformly distributed within the superconducting $(Nd/Y)Ba_2Cu_3O_x$ matrix. The directionally melt-textured (Nd/Y) 1.8 superconductor showed an onset Tc $\geq$ 90 K and a sharp superconducting transition.

Cold Isostatic Pressing and Sintering Behavior of (Al +12.5%Cu)3Zr Nanocrystalline Intermetallic Compound Synthesized by Mechanical Alloying (기계적합금화한 (Al +12.5%Cu)3Zr 초미립 금속간화합물의 CIP 성형 및 소결 거동)

  • Moon, H.G.;Hong, K.T.;Kim, S.J.
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.634-640
    • /
    • 2002
  • To improve the ductility of mTEX>$(Al +12.5%Cu)<_3$Zr intermetallics, which are the potential high temperature structural materials, the mechanical alloying behavior, the effect of pressure and temperature on the $Ll_2$, phase formation and the behavior of the cold isostatic press and sintering were investigated. However mechanically alloyed A1$_3$Zr alloy have been known to have high mechanical strength even at high temperature, its workability was poor. A method of solution is refined grain size and phase transformation from $DO_{23}$ to $Ll_2$.$ Ll_2$ structure TEX>$(Al+12.5%Cu)<_3$Zr with nanocrystalline microstructure intermetallic powders where were prepared by mechanical alloying of elemental powders. Grain sizes of the as milled powders were less than 10nm (from transmission electron microscopy, TEM). Thermal analyses showed that $Ll_2$ structure was stable up to$ 800^{\circ}C$ for 1hour $(Al+ 12.5%Cu)<_3$Zr. $(Al+12.5%Cu)<_3$Zr has been consolidated by cold isostatic pressing (CIP 138, 207, 276, 414MPa) at room temperature and subsequent heat treatment at high temperatures where $Ll_2$ structure was stable under vacuum atmosphere. The results showed that 94.2% density of Ll$_2$ compacts was obtained for the (Al +12.5%Cu)$_3$Zr by sintering at 80$0^{\circ}C$ for 1hour (under CIPed 207MPa). This compact of the grain size was 40nm.

Evaluation of Horizontal Shear Strength of Prestressed Hollow-Core Slabs with Cast-in-Place Topping Concrete (프리스트레스트 중공 슬래브와 현장타설된 토핑콘크리트의 수평전단성능 평가)

  • Im, Ju-Hyeuk;Park, Min-Kook;Lee, Deuck-Hang;Seo, Soo-Yeon;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.741-749
    • /
    • 2014
  • Prestressed hollow-core (PHC) slabs are structurally-optimized lightweight precast floor members for long-span concrete structures, which are widely used in construction markets. In Korea, the PHC slabs have been often used with cast-in-place (CIP) topping concrete as a composite slab system. However, the PHC slab members produced by extrusion method use concrete having very low slump, and it is very difficult to make sufficient roughness on the surface as well as to provide shear connectors. In this study, a large number of push-off tests was conducted to evaluate interfacial shear strengths between PHC slabs and CIP topping concrete with the key variable of surface roughness. In addition, the horizontal shear strengths specified in the various design codes were evaluated by comparing to the test results that were collected from literature.

Study on Development and Application of CWS(Continuous Wall System) II Method (CWS(Continuous Wall System) II 공법의 개발 및 적응에 관한 연구)

  • Lim, In-Sig;Lee, Jeong-Bae;Choi, Sun-Young;Lee, Jai-Ho;Woo, Sung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • CWS I method developed to overcome the problems of frequent occurrence in the application of existing downward construction methods has demonstrated excellent efficiency. However, in the case of using slurry wall instead of SCW or CIP as a retaining wall, the improvements in connecting steel beams with the wall were demanded. Therefore, the study of CWS II method was carried out in order to accomplish the CWS I method reflecting its strong points and to ensure the settlement of a steel beam and to induce the diaphragm effect of a slab while reducing the degree of difficulty and the term of works and the cost of construction. In this paper, the concept and features of CWS II method as well as the progress of execution was discussed by comparing with existing methods.

Comparison of Volume of Fluid (VOF) type Interface Capturing Schemes using Eulerian Grid System (오일러 격자체계에서 유체율 함수에 기초한 경계면 추적기법의 비교)

  • Kim, Do-Sam;Kim, Tag-Gyeom;Shin, Bum-Shick;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The application of multiphase flows is increasingly being applied to analyze phenomena such as single phase flows where the fluid boundary changes continuously over time or the problem of mixing a liquid phase and a gas phase. In particular, multiphase flow models that take into account incompressible Newtonian fluids for liquid and gas are often applied to solve the problems of the free water surface such as wave fields. In general, multi-phase flow models require time-based the surface tracking of each fluid's phase boundary, which determines the accuracy of the final calculation of the model. This study evaluates the advection performance of representative VOF-type boundary tracking techniques applied to various CFD numerical codes. The effectiveness of the FCT method to control the numerical flux to minimize the numerical diffusion in the conventional VOF-type boundary tracking method and advection calculation was mainly evaluated. In addition, the possibility of tracking performance of free surface using CIP method (Yabe and Aoki, 1991) was also investigated. Numerical results show that the FCT-VOF method introducing an anti-diffusive flux to precent excessive diffusion is superior to other methods under the confined conditions in this study. The results from this study are expected to be used as an important basic data in selecting free surface tracking techniques applied to various numerical codes.

Effect of water cut-off by M.S.G. method for weathered soil and alluvial soil (풍화토 및 충적토 지반에 적용된 M.S.G공법의 차수효과)

  • 지덕진;우상백;강진기;김태한;박종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.85-92
    • /
    • 2003
  • Generally, ordinary portland cement(OPC) is widely used for grouting to reduce permeability of ground under the foundations of structures. But, it is hard to be injected into the microscopic voids, fissures and crevices in soil or rock formation for the OPC material. Therefore new method what is called MSG(Micro Silica Grouting) has been developed recently to improve the weak point of the OPC material. In this case study, in order to verify performance of the MSG's water cut-off, trial injections were performed in rear of CIP(Cast in Place Pile) on the site A(weathered soil) and B(alluvial soil) that are constructed for the subway No. 9 nowadays. To take the proper grouting method of the MSG in the trial injecting, the injections are carried out for grouting types(constant pressure or fixed Quantity) and grouting methods(1.5shot or 2.0shot) and to confirm the effects of water cut-off and the injection range of the MSG, the tests of permeability and indicator(phenolphthalein) response were performed before and after the injection. Through the tests results, we could affirm the effects of water cut-off of the MSG and the injection range for the weathered and alluvial soil layers near the Han River. Finally we could make sure the application of the MSG method in actual construction under the layers.

  • PDF

A Physics-Based Modelling of Multipbase Fluid Phenomena (물리적 모델에 기반한 다상 유체 현상 애니메이션)

  • Song, Oh-Young;Shin, Hyun-Cheol;Ko, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.10 no.3
    • /
    • pp.52-60
    • /
    • 2004
  • This paper presents a physically based technique for simulating complex multiphase fluids. This work is motivated by the "stable fluids" method developed by Stam to handle gaseous fluids. We extend this technique to water, which calls for the development of methods for modeling multiphase fluids and suppressing dissipation. We construct a multiphase fluid formulation by combining the Navier-Stokes equations with the level set method. By adopting constrained interpolation profile (CIP)-based advection, we reduce the numerical dissipation and diffusion significantly. We further reduce the dissipation by converting potentially dissipative cells into droplets or bubbles that undergo Lagrangian motion. Due to the multiphase formulation, the proposed method properly simulates the interaction of water with surrounding air, instead of simulating water in a void space. Moreover. the introduction of the non-dissipative technique means that, in contrast 10 previous methods, the simulated water does not unnecessarily lose mass and its motion is not damped to an unphysical extent. Experiments showed that the proposed method is stable and runs fast. It is demonstrated that two-dimensional simulation runs in real-time.

  • PDF

A Field Case on the Pilot Constructions and Changes of a Braced Cut Wall in a Coastal Filled Land (해안매립지반에서의 토류가시설 시험시공 및 변경사례)

  • Hwang, Young-Chul;Kim, Ki-Rim;Kim, Yeon-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.46-55
    • /
    • 2006
  • There are many kinds of braced cut wall methods as the sheet pile, SCW, CIP and slurry wall which is adoptable for a deep excavation construction in a coastal filled land. The braced cut wall which has a strong stiffness is very stable but it has the weak point that the construction cost is high. Thus when a braced cut wall is designed, the geotechnical engineers choose the braced cut wall which has more safe and economic in the consideration of surrounding buildings near the construction site. Especially, when the sheet pile method as a braced cut wall is cheesed, the layer order and consistence of a coastal deposit stratum are considered and the pile driving method is also considered. This paper introduces the case that the originally box-type sheet pile wall was changed to U-type and high strength material after the pilot test at the subway construction site in a coastal filled land. This paper also introduces the case that the sheet pile's driving method was changed to special method in the section of the temporary coffer dam which had made when the present coastal filled land was formed.

  • PDF

A Physics-Based Modelling of Multiphase Fluid Phenomena (물리적 모델에 기반한 다상 유체 현상 애니메이션)

  • Song, Oh-Young;Shin, Hyun-Cheol;Ko, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.10 no.4
    • /
    • pp.13-21
    • /
    • 2004
  • This paper presents a physically based technique for simulating complex multiphase fluids. This work is motivated by the "stable fluids" method developed by Stam to handle gaseous fluids. We extend this technique to water, which calls for the development of methods for modeling multiphase fluids and suppressing dissipation. We construct a multiphase fluid formulation by combining the Navier-Stokes equations with the level set method. By adopting constrained interpolation profile (CIP)-based advection, we reduce the numerical dissipation and diffusion significantly. We further reduce the dissipation by converting potential1y dissipative cel1s into droplets or bubbles that undergo Lagrangian motion. Due to the multiphase formulation, the proposed method properly simulates the interaction of water with surrounding air, instead of simulating water in a void space. Moreover, the introduction of the non-dissipative technique means that, in contrast to previous methods, the simulated water does not unnecessarily lose mass and its motion is not damped to an unphysical extent. Experiments showed that the proposed method is stable and runs fast. It is demonstrated that two-dimensional simulation runs in real-time.

  • PDF

Strut as a Permanent System using Composite Beams (층고절감형 거더를 이용한 영구 스트러트 공법)

  • Hong, Won-Kee;Park, Seon-Chee;Kim, Jin-Min;Lee, Ho-Chan
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Sheathing work used for excavation in a crowded downtown is generally a temporary strut method using H-piles and sheathing wall includes lagging, CIP, SCW or slurry wall. A temporary strut serving the support for sheathing wall acts to resist the earth pressure, but it shall be removed when installing the underground structure members. A traditional temporary strut might cause the stress imbalance of the sheathing wall when it is demolished, resulting in time extension and the risk of collapse. A traditional temporary strut method thus needs to be improved for schedule and cost reduction, risk mitigation and for preparation for potential civic complaint. A permanent strut method doesn't require installing and demolishing the temporary structure that will lead to reducing the time and cost and the structural risk during the demolition process. And given the girder, the part of the underground structure, serves the role of strut, it can secure the wider interval compared to the traditional method, which enables to secure the wider space for the convenience of excavation as well as enhance the constructability and efficient site management. The thesis was intended to study the composite girder designed to use the strut as permanent structure so as to reduce the excavation and floor height.