Browse > Article
http://dx.doi.org/10.3740/MRSK.2002.12.8.634

Cold Isostatic Pressing and Sintering Behavior of (Al +12.5%Cu)3Zr Nanocrystalline Intermetallic Compound Synthesized by Mechanical Alloying  

Moon, H.G. (한양대학교 재료공학부)
Hong, K.T. (한국과학기술연구원 합금설계연구부)
Kim, S.J. (한양대학교 재료공학부)
Publication Information
Korean Journal of Materials Research / v.12, no.8, 2002 , pp. 634-640 More about this Journal
Abstract
To improve the ductility of mTEX>$(Al +12.5%Cu)<_3$Zr intermetallics, which are the potential high temperature structural materials, the mechanical alloying behavior, the effect of pressure and temperature on the $Ll_2$, phase formation and the behavior of the cold isostatic press and sintering were investigated. However mechanically alloyed A1$_3$Zr alloy have been known to have high mechanical strength even at high temperature, its workability was poor. A method of solution is refined grain size and phase transformation from $DO_{23}$ to $Ll_2$.$ Ll_2$ structure TEX>$(Al+12.5%Cu)<_3$Zr with nanocrystalline microstructure intermetallic powders where were prepared by mechanical alloying of elemental powders. Grain sizes of the as milled powders were less than 10nm (from transmission electron microscopy, TEM). Thermal analyses showed that $Ll_2$ structure was stable up to$ 800^{\circ}C$ for 1hour $(Al+ 12.5%Cu)<_3$Zr. $(Al+12.5%Cu)<_3$Zr has been consolidated by cold isostatic pressing (CIP 138, 207, 276, 414MPa) at room temperature and subsequent heat treatment at high temperatures where $Ll_2$ structure was stable under vacuum atmosphere. The results showed that 94.2% density of Ll$_2$ compacts was obtained for the (Al +12.5%Cu)$_3$Zr by sintering at 80$0^{\circ}C$ for 1hour (under CIPed 207MPa). This compact of the grain size was 40nm.
Keywords
intermetallics; nanocrystalline; $Ll_2$ structure; cold isostatic pressing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F.H. Froes, Metal Power Reports, 59, (1989)
2 L. Lu and M.O. Lai : Mechanical Alloying, Kluwer acadenic publishers, p.84-108, (1998)
3 C.T. Liu : Intermetallic Compounds, 2. p.17, (1994)
4 W.E. Frazier and MIJ. Koczak, in Dispersion Strengthened Aluminum alloys, Y.W. Kim and W.M.W. Griffith, ends., p.573, (1988)
5 R. Brringer : Mater. Sci. Eng. A117, p.33, (1989)   DOI   ScienceOn
6 J. Karek et al. ; Nature, 330, p.556 (1987)   DOI   ScienceOn
7 Z.G. Li and D.J. Smith ; Appl. phys. lett. 55, p.919, (1989)   DOI
8 Richard W. Siegel and Gretchen E. Fouger, 'Grain Size Dependent Mechanical Properties in Nanophase Meterials' Mat. Res. Soc. Symp. Proc., 362, (1995)
9 A. Raman and K. Schubert, Z. Metallkunde, 56, p.40, (1965)
10 M.W. Weiser and L.C. De Jomghe, J.Am.Ceram.Soc., 71, C125-27, (1995)   DOI   ScienceOn
11 C.S. Nordahl and G.L. Messing, J.Am.Ceram.Soc. 79 (12), 3149 (1996)   DOI   ScienceOn
12 M.F. Ashby, Acta Metall, 22, 275 (1974)   DOI   ScienceOn
13 F.B. Swinkels and M.F. Ashby, Acta Metall., 29, 259 (1981)   DOI   ScienceOn
14 G.K. Williamson, W.H. Hall, Acta Metall., 3, 473 (1953)
15 M. Atzmon, Physical review letters, 64(9), 487, (1990)   DOI   ScienceOn
16 M. Yamaguchi and T. Yamane, Mat. Res. Soc. Symp. Proc., 81, 275, (1987)
17 K. Hayashi and T. W. Lin, Advances in Podwer Metallurgy and particulate Materials, Vol. 3, J. Capus and R. M German(eds.), Metal Power Industries Federation, Princeton, NJ, p.219 (1990)
18 S. K. Pabi, B. S. Murty, Mater. Sci.Eng, A214, 146, (1996)   DOI   ScienceOn
19 S.C. Liao, Y.J. Chen, B.H. Kear and W.E. Mayo 10, No. 6, pp.1063 (1998)   DOI   ScienceOn
20 H. Palmour, M. Geho, R. L.Russell, and T. M. Hare, Sintering 91, A.C.D. Chaklader and J.A.Lund, Trans Tech, Brookfield, VT, p.37 (1992)
21 R.L. Coble, J.Appl.Phy., 32, p.787 (1961)   DOI
22 N.A.L. Mansour and J. White, Powder Met., 6, p.108 (1963)   DOI
23 G. Matsumura and W.S. Tuan, Powder Met. Intern., 15, p.188 (1983)
24 C. Greskovichi and K.W. Lay, J. Am. Ceram. Soc., 55(1), p.142 (1972)   DOI
25 W.H. Rhodes, J.Amer.Ceram.Soc., 64, p.19 (1981)   DOI   ScienceOn
26 H.S. Choi, Y.K. Yoon, and W.K. Park, Intern.J.Powder Met., 9, p.23 (1973)