• 제목/요약/키워드: CID-MS/MS

검색결과 26건 처리시간 0.021초

하고초의 생리활성 성분 Triterpenic Acids의 FAB-MS를 이용한 구조 규명 (Structural determination of triterpenic acids in Prunellae Spica by fast atom bombardment tandem mass spectrometry)

  • 안영민;이강노;홍종기
    • 분석과학
    • /
    • 제21권4호
    • /
    • pp.245-258
    • /
    • 2008
  • 본 연구에서는 하고초의 지표성분인 triterpenic acids 5종을 컬럼 크로마토그래피와 역상 HPLC를 이용하여 추출 및 분리했고, 이들 성분의 순도는 90% 이상임을 HPLC를 이용하여 확인했다. 고속원자충돌 이온화법-고분해능 질량분석기(FAB-HRMS)를 사용하여 지표성분의 분자량 및 원소조성을 결정했으며, 지표성분의 구조 분석은 FAB-MS/MS 의해 음이온 및 양이온 모드에서 수행하였다. Triterpenic acid류의 충돌유발분해(collision-induced dissociation, CID) 탄뎀질량분석(MS/MS) 스펙트럼에서 protonated molecule인 $[M+H]^+$ 및 deprotonated molecule인 $[M-H]^-$ 이온의 CID는 주로 retro Diels-Alder (RDA), 탈수 (dehydration) 및 탈탄산(decarboxylation) 반응에 의한 다양한 생성이온들이 나타났다. 특히, $[M-H]^-$이온의 CID-MS/MS 스펙트럼에서는 charge-remote fragmentation (CRF) 현상에 의한 이온들도 특성이온으로 나타났다. 이들 CID-MS/MS 스펙트럼의 해석을 통하여 하고초의 지표성분인 triterpenic acids의 구조 규명을 수행하였다.

GC-MS/Ms Analysis of Benzo(a)pyrene by Ion Trap Tandem Mass Spectrometry

  • Nam, Jae-Jak;Lee, Sang-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1097-1102
    • /
    • 2002
  • The mass spectrometry using an ion trap tandem mass spectrometer has been investigated to find optimum conditions for the analysis of benzo(a)pyrene (3,4-benzpyrene). The applicability to a real soil sample was also investigated to verify the usef ulness of the MS/MS (or collision induced dissociation, CID) analysis. The optimum CID condition was 1.5 and 0.45 for the RF excitation voltage and the q value, respectively. For comparison, CID and EI were applied to the analysis of a soil sample. CID analysis was more sensitive than EI analysis of the soil sample. The limit of detection (LOD) of benzo(a)pyrene was 3.18 ng mL-1 and 0.85 ng mL,-1 for EI and MS/MS analysis, respectively. The precision at the soil sample for EI and CID showed relative standard deviations of 6.1% and 4.1%, respectively, and the concentrations were 168 ㎍ kg-1 and 162 ㎍ kg-1 , respectively.

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

  • Cha, Eugene;Seo, Jae-Hong;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • 제9권1호
    • /
    • pp.17-23
    • /
    • 2018
  • Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

Camostat 및 분해산물 4-(4-guanidinobenzoyloxy)phenylacetic acid의 전자분무 이온화 텐덤 질량 fragmentation 패턴 (Electrospray ionization tandem mass fragmentation pattern of camostat and its degradation product, 4-(4-guanidinobenzoyloxy)phenylacetic acid)

  • 권순호;신혜진;박지명;이경률;김영진;이상후
    • 분석과학
    • /
    • 제24권2호
    • /
    • pp.78-84
    • /
    • 2011
  • 본 연구에서는 양성 및/또는 음성 이온 방식으로 저에너지 충돌-유발 분해(CID)를 이용한 serine protease 저해제인 camostat 와 그것의 분해산물인 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA)의 분해 패턴을 전자분무 소스가 있는 사중극자 텐덤 질량분석기(ESI-MS/MS)를 이용하여 최초로 조사하였다. Camostat의 양이온 CID 질량 스펙트럼 분석결과, 분자구조내 에스테르 결합을 이루는 카르보닐 기와 산소 원자사이의 단일 결합(C-O) 분해가 우선적으로 일어나고, guanidine 기의 초기 손실보다는 N,Ndimethylcarbamoylmethyl기의 초기 손실이 더 잘 일어난다는 것이 특징적으로 확인되었다. GBPA의 양이온 CID 스펙트럼의 경우는, 4-guanidinobenzoyloxy 기에 있는 카르보닐 기와 산소원자 사이의 초기 분해가 일어나서 m/z 145에서 가장 강도가 높은 피크를 만들었다. 반면에, GBPA의 음이온 스펙트럼은 m/z 312의 모분자 이온에서 $CO_2$와 NH=C=NH의 순차적인 중성 손실로 인하여 m/z 226의 가장 강도가 높은 피크가 특징적으로 생성되었다.

Fragmentation Analysis of rIAPP Monomer, Dimer, and [MrIAPP + MhIAPP]5+ Using Collision-Induced Dissociation with Electrospray Ionization Mass Spectrometry

  • Kim, Jeongmo;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • 제12권4호
    • /
    • pp.179-185
    • /
    • 2021
  • Collision-induced dissociation (CID) combined with electrospray ionization mass spectrometry (ESI-MS) was used to obtain structural information on rat islet amyloid polypeptide (rIAPP) monomers (M) and dimers (D) observed in the multiply charged state in the MS spectrum. MS/MS analysis indicated that the rIAPP monomers adopt distinct structures depending on the molecular ion charge state. Peptide bond dissociation between L27 and P28 was observed in the MS/MS spectra of rIAPP monomers, regardless of the monomer molecular ion charge state. MS/MS analysis of the dimers indicated that D5+ comprised M2+ and M3+ subunits, and that the peptide bond dissociation process between the L27 and P28 residues of the monomer subunit was also maintained. The observation of (M+ b27)4+ and (M+ y10)3+ fragment ions were deduced to originate from the two different D5+ complex geometries, the N-terminal and C-terminal interaction geometries, respectively. The fragmentation pattern of the [MrIAPP + MhIAPP]5+ MS/MS spectrum showed that the interaction occurred between the two N-terminal regions of MrIAPP and MhIAPP in the heterogeneous dimer (hetero-dimer) D5+ structure.

Theoretical and Experimental 31P NMR and ESI-MS Study of Hg2+ Binding to Fenitrothion

  • Koo, In-Sun;Ali, Dildar;Yang, Ki-Yull;vanLoon, Gary W.;Buncel, Erwin
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권6호
    • /
    • pp.1257-1261
    • /
    • 2009
  • We present the theoretical and experimental results of $^{31}P$ NMR and low energy CID MS/MS study of $Hg^{2+}$ binding to fenitrothion (FN). The calculated $^{31}P$ NMR chemical shifts order for FN with $Hg^{2+}$ complex is in good agreement with experimental $^{31}P$ NMR chemical shifts order. The experimental and theoretical $^{31}P$ NMR study of organophosphorus pesticide with $Hg^{2+}$ gives to important information for organophosphorus pesticide metal complexes. ESI-MS and low energy CID MS/MS experiments of $Hg^{2+}$-FN complexes combined with accurate mass measurements give insight into the metal localization and allow unambiguous identification of fragments and hydrolysis products.

Statistical Characterization of the Multi-Charged Fragment Ions in the CID and HCD Spectrum

  • Ramachandran, Sangeetha;Thomas, Tessamma
    • Mass Spectrometry Letters
    • /
    • 제12권2호
    • /
    • pp.41-46
    • /
    • 2021
  • Collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) are the widely used fragmentation technique in mass spectrometry-based proteomics studies. Understanding the fragmentation pattern from the tandem mass spectra using statistical methods helps to implement efficient spectrum analysis algorithms. The study characterizes the frequency of occurrence of multi-charged fragment ions and their neutral loss events of doubly and triply charged peptides in the CID and HCD spectrum. The dependency of the length of the fragment ion on the occurrence of multi-charged fragment ion is characterized here. Study shows that the singly charged fragment ions are generally dominated in the doubly charged peptide spectrum. However, as the length of the product ion increases, the frequency of occurrence of charge 2 fragment ions increases. The y- ions have more tendencies to generate charge 2 fragment ions than b- ions, both in CID and HCD spectrum. The frequency of occurrence of charge 2 fragment ion peaks is prominent upon the dissociation of the triply charged peptides. For triply charged peptides, product ion of higher length occurred in multiple charge states in CID spectrum. The neutral loss peaks mostly exist in charge 2 states in the triply charged peptide spectrum. The b-ions peaks are observed in much less frequency than y-ions in HCD spectrum as the length of the fragment increases. Isotopic peaks are occurred in charge 2 state both in doubly and triply charged peptide's HCD spectrum.

Comparison between Source-induced Dissociation and Collision-induced Dissociation of Ampicillin, Chloramphenicol, Ciprofloxacin, and Oxytetracycline via Mass Spectrometry

  • Lee, Seung Ha;Choi, Dal Woong
    • Toxicological Research
    • /
    • 제29권2호
    • /
    • pp.107-114
    • /
    • 2013
  • Mass spectrometry (MS) is a very powerful instrument that can be used to analyze a wide range of materials such as proteins, peptides, DNA, drugs, and polymers. The process typically involves either chemical or electron (impact) ionization of the analyte. The resulting charged species or fragment is subsequently identified by the detector. Usually, single mass uses source-induced dissociation (SID), whereas mass/mass uses collision-induced dissociation (CID) to analyze the chemical fragmentations Each technique has its own advantages and disadvantages. While CID is most effective for the analysis of pure substances, multiple-step MS is a powerful technique to get structural data. Analysis of veterinary drugs ampicillin, chloramphenicol, ciprofloxacin, and oxytetracycline serves to highlight the slight differences between SID and CID. For example, minor differences were observed between ciprofloxacin and oxytetracycline via SID or CID. However, distinct fragmentation patterns were observed for ampicllin depending on the analysis method. Both SID and CID showed similar fragmentation spectra but different signal intensities for chloramphenicol. There are several factors that can influence the fragmentation spectra, such as the collision energy, major precursor ion, electrospray mode (positive or negative), and sample homogeneity. Therefore, one must select a fragmentation method on an empirical and case-by-case basis.

Structural Determination of Fatty Acyl Groups of Phospholipids by Fast Atom Bombardment Tandem Mass Spectrometry of Sodium Adduct Molecular Ions

  • 김영환;유종신;김명수
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권8호
    • /
    • pp.874-880
    • /
    • 1997
  • Various classes of phospholipids were investigated for the structural determination of fatty acyl groups by fast atom bombardment tandem mass spectrometry (FAB-MS/MS). Phospholipids were desorbed by FAB as molecules chelated with sodium ion (or ions). Collision-induced dissociation (CID) of intact sodium adduct molecular ions ([M+Na]+, [M-H+2Na]+ or [M+Na-2H]-) produced a series of homologous fragment ions via the charge-remote fragmentation along the fatty acid chains. These ions were found useful to locate the double bond positions even for the polyunsaturated fatty acid chains. The regiospecificity of the acyl chain linkages in phosphatidylcholine (PC) could also be determined based on the ratio of relative abundance of the product ions (i.e., [M+Na-85-R2COOH]+ vs [M+Na-85-R1COOH]+) in CID-MS/MS of [M+Na]+. These are generated by the loss of fatty acyl groups at sn-1 and sn-2, respectively, together with the choline group. In all the phospholipid compounds investigated, loss of the fatty acid at the sn-2 position was dominant. The present method was applied to the structural determination of molecular species of phosphatidylglycerols (PG) isolated from cyanobacterium Synechocystis sp. PCC 6803.

31P NMR and ESI-MS Study of Fenitrothion-Copper Ion Complex: Experimental and Theoretical Study

  • Choi, Ho-June;Yang, Ki-Yull;Park, Jong-Keun;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1339-1342
    • /
    • 2010
  • $^{31}P$ NMR and ESI-MS studies of $Cu^{2+}$ binding to Fenitrothion (FN) were performed by experimentally and theoretically. The calculated $^{31}P$ NMR chemical shifts for FN-$Cu^{2+}$ complexes are in good agreement with experimental chemical shifts in order, and the results present an important information for organophosphorus pesticide metal complexes. ESI-MS and low energy CID MS/MS experiments of FN-$Cu^{2+}$ complexes combined with accurate mass measurements give insight into the metal localization and allow unambiguous identification of fragments and hydrolysis products.