Browse > Article
http://dx.doi.org/10.5478/MSL.2017.9.1.17

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes  

Cha, Eugene (Department of Applied Chemistry, Kumoh National Institute of Technology)
Seo, Jae-Hong (Department of Applied Chemistry, Kumoh National Institute of Technology)
Kim, Ho-Tae (Department of Applied Chemistry, Kumoh National Institute of Technology)
Publication Information
Mass Spectrometry Letters / v.9, no.1, 2018 , pp. 17-23 More about this Journal
Abstract
Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.
Keywords
amyloidogenic peptides; Cu(II) ions; oligomer; ESI-MS; CID-MS/MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stefani, M. Prog. Neurobiol. 2012, 99, 226.   DOI
2 Demuro, A.; Mina, E.; Kayed, R.; Milton, S. C.; Parker, I.; Glabe, C. G. J. Biol. Chem. 2005, 280, 17294.   DOI
3 Teng, P. K.; Eisenberg, D. Protein Eng. Des. Sel. 2009, 22, 531.   DOI
4 Zou, R.; Wang, Q.; Wu, J.; Wu, J.; Schmuck, C.; Tian, H. Chem. Soc. Rev. 2015, 44, 5200.   DOI
5 Abelein, A.; Graslund, A.; Danielsson, J. Proc. Natl. Acad. Sci. 2015, 112, 5407.   DOI
6 Li, H.; Ha, E.; Donaldson, R. P.; Jeremic, A. M.; Vertes, A. Anal. Chem. 2015, 87, 9829.   DOI
7 Sanchez-Lopez, C.; Cortes-Mejia, R.; Miotto, M. C.; Binolfi, A.; Fernández, C. O.; Del Campo, J. M.; Quintanar, L. Inorg. Chem. 2016.
8 Gomes, C. M.; Wittung-Stafshede, P. Protein folding and metal ions: mechanisms, biology and disease, CRC Press: Boca Raton, 2011.
9 Dong, J.; Bloom, J. D.; Goncharov, V.; Chattopadhyay, M.; Millhauser, G. L.; Lynn, D. G.; Scheibel, T.; Lindquist, S. J. Biol. Chem. 2007, 282, 34204.   DOI
10 Brader, M. L.; Borchardt, D.; Dunn, M. F. Biochemistry (Mosc.) 1992, 31, 4691.   DOI
11 Krishna, N. R. S.; Pattabhi, V.; Rajan, S. S. Protein Pept. Lett. 2011, 18, 457.   DOI
12 Ma, Q. -F.; Li, Y. -M.; Du, J. -T.; Kanazawa, K.; Nemoto, T.; Nakanishi, H.; Zhao, Y. -F. Biopolymers 2005, 79, 74.   DOI
13 Calabrese, M. F.; Miranker, A. D. Prion 2009, 3, 1.   DOI
14 Timari, S.; Cerea, R.; Varnagy, K. J. Inorg. Biochem. 2011, 105, 1009.   DOI
15 Seo, J. -H.; Cha, E.; Kim, H. -T. Int. J. Mass Spectrom. 2017, 415, 55.   DOI
16 Pedersen, J. T.; Teilum, K.; Heegaard, N. H. H.; Ostergaard, J.; Adolph, H. -W.; Hemmingsen, L. Angew. Chem. Int. Ed. 2011, 50, 2532.   DOI
17 Gamez, P.; Caballero, A. B. AIP Adv. 2015, 5, 92503.   DOI
18 Derrick, J. S.; Lee, J.; Lee, S. J. C.; Kim, Y.; Nam, E.; Tak, H.; Kang, J.; Lee, M.; Kim, S. H.; Park, K.; Cho, J.; Lim, M. H. J. Am. Chem. Soc. 2017, 139, 2234.   DOI
19 Mold, M.; Ouro-Gnao, L.; Wieckowski, B. M.; Exley, C. Sci. Rep. 2013, 3, 1256.   DOI
20 Mayes, J.; Tinker-Mill, C.; Kolosov, O.; Zhang, H.; Tabner, B. J.; Allsop, D. J. Biol. Chem. 2014, 289, 12052.   DOI
21 Xu, H.; Finkelstein, D. I.; Adlard, P. A. Front. Aging Neurosci. 2014, 6, 121.
22 Hane, F.; Tran, G.; Attwood, S. J.; Leonenko, Z. PLoS One 2013, 8, e59005.   DOI
23 Pedersen, J. T.; Ostergaard, J.; Rozlosnik, N.; Gammelgaard, B.; Heegaard, N. H. H. J. Biol. Chem. 2011, 286, 26952.   DOI
24 Belczyk-Ciesielska, A.; Zawisza, I. A.; Mital, M.; Bonna, A.; Bal, W. Inorg. Chem. 2014, 53, 4639.   DOI
25 Roepstorff, P.; Fohlman, J. Biomed. Mass Spectrom. 1984, 11, 601.   DOI
26 Hunt, D. F.; Yates, J. R.; Shabanowitz, J.; Winston, S.; Hauer, C. R. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 6233.   DOI
27 Bleiholder, C.; Dupuis, N. F.; Wyttenbach, T.; Bowers, M. T. Nat. Chem. 2011, 3, 172.   DOI
28 Wagoner, V. A.; Cheon, M.; Chang, I.; Hall, C. K. Proteins Struct. Funct. Bioinforma. 2014, 82, 1469.   DOI
29 Wogulis, M. J. Neurosci. 2005, 25, 1071.   DOI
30 Jarrett, J. T.; Lansbury, P. T. Cell 1993, 73, 1055.   DOI
31 Jobling, M. F.; Stewart, L. R.; White, A. R.; McLean, C.; Friedhuber, A.; Maher, F.; Beyreuther, K.; Masters, C. L.; Barrow, C. J.; Collins, S. J.; Cappai, R. J. Neurochem. 2002, 73, 1557.   DOI