Browse > Article
http://dx.doi.org/10.5478/MSL.2021.12.4.179

Fragmentation Analysis of rIAPP Monomer, Dimer, and [MrIAPP + MhIAPP]5+ Using Collision-Induced Dissociation with Electrospray Ionization Mass Spectrometry  

Kim, Jeongmo (Department of Applied Chemistry, Kumoh National Institute of Technology)
Kim, Ho-Tae (Department of Applied Chemistry, Kumoh National Institute of Technology)
Publication Information
Mass Spectrometry Letters / v.12, no.4, 2021 , pp. 179-185 More about this Journal
Abstract
Collision-induced dissociation (CID) combined with electrospray ionization mass spectrometry (ESI-MS) was used to obtain structural information on rat islet amyloid polypeptide (rIAPP) monomers (M) and dimers (D) observed in the multiply charged state in the MS spectrum. MS/MS analysis indicated that the rIAPP monomers adopt distinct structures depending on the molecular ion charge state. Peptide bond dissociation between L27 and P28 was observed in the MS/MS spectra of rIAPP monomers, regardless of the monomer molecular ion charge state. MS/MS analysis of the dimers indicated that D5+ comprised M2+ and M3+ subunits, and that the peptide bond dissociation process between the L27 and P28 residues of the monomer subunit was also maintained. The observation of (M+ b27)4+ and (M+ y10)3+ fragment ions were deduced to originate from the two different D5+ complex geometries, the N-terminal and C-terminal interaction geometries, respectively. The fragmentation pattern of the [MrIAPP + MhIAPP]5+ MS/MS spectrum showed that the interaction occurred between the two N-terminal regions of MrIAPP and MhIAPP in the heterogeneous dimer (hetero-dimer) D5+ structure.
Keywords
rat islet amyloid polypeptide (rIAPP); human islet amyloid polypeptide (hIAPP); heterogeneous dimer; collision-induced dissociation mass spectrometry (CID-MS); MS/MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hoppener, J. W.; Lips, C. J. Int. J. Biochem. Cell Biol. 2006, 38, 726, DOI: 10.1016/j.biocel.2005.12.009.   DOI
2 Sawaya, M. R.; Sambashivan, S.; Nelson, R.; Ivanova, M. I.; Sievers, S. A.; Apostol, M. I.; Thompson, M. J.; Balbirnie, M.;Wiltzius, J. J.; McFarlane, H. T.; Madsen, A.; Riekel, C.; Eisenberg, D. Nature 2007, 447, 453, DOI:10.1038/nature05695.   DOI
3 Hebda, J. A.; Miranker, A. D. Annu. Rev. Biophys. 2009, 38, 125, DOI: 10.1146/annurev.biophys.050708.133622.   DOI
4 Lin, C. Y.; Gurlo, T.; Kayed, R.; Butler, A. E.; Haataja, L.; Glabe, C. G.; Butler, P. C. Diabetes 2007, 56, 1324, DOI: 10.2337/db06-1579.   DOI
5 Dupuis, N. F.; Wu, C.; Shea, J.-E.; Bowers, M. T. J. Am. Chem. Soc. 2011, 133, 7240, DOI: 10.1021/ja1081537.   DOI
6 Young, L. M.; Cao, P.; Raleigh, D. P.; Ashcroft, A. E.; Radford, S. E. J. Am. Chem. Soc. 2014, 136, 660, DOI:10.1021/ja406831n.   DOI
7 Liang, G.; Zhao, J.; Yu, X.; Zheng, J. Biochemistry 2013, 52, 1089, DOI: 10.1021/bi301525e.   DOI
8 Seo, J.-H.; Cha, E.; Kim, H.-T. Chem. Phys. Lett. 2018, 708, 61, DOI: 10.1016/j.cplett.2019.06.044.   DOI
9 Zhao, D. S.; Chen, Y. X.; Li, Y. M. Chem. Commun. 2015, 51, 2095, DOI: 10.1039/c4cc06739h.   DOI
10 Buchanan, L. E.; Dunkelberger, E. B.; Tran, H. Q.; Cheng, P. N.; Chiu, C. C.; Cao, P.; Raleigh, D. P.; de Pablo, J. J.; Nowick, J. S.; Zanni, M. T. Proc. Natl. Acad. Sci. USA 2013, 110, 19285, DOI: 10.1073/pnas.1314481110.   DOI
11 Haataja, L.; Gurlo, T.; Huang, C. J.; Butler, P. C. Endocr. Rev. 2008, 29, 303, DOI: 10.1210/er.2007-0037.   DOI
12 Liu, N.; Duan, M.; Yang, M. Sci. Rep. 2017, 7, 7915, DOI: 10.1038/s41598-017-08504-x.   DOI
13 Laghaei, R.; Mousseau, N.; Wei, G. H. J. Phys. Chem. B. 2011, 115, 3146, DOI: 10.1021/jp108870q.   DOI
14 Dupuis, N. F.; Wu, C.; Shea, J. E.; Bowers, M. T. J. Am. Chem. Soc. 2009, 131, 18283, DOI: 10.1021/ja903814q.   DOI
15 Mo, Y.; Lei, J.; Sun, Y.; Zhang, Q.; Wei, G. Sci. Rep. 2016, 6, 33076, DOI: 10.1038/srep33076.   DOI
16 Jobling, M. F.; Stewart, L. R.; White, A. R.; McLean, C.; Friedhuber, A.; Maher, F.; Beyreuther, K.; Masters, C. L.; Barrow, C. J.; Collins, S. J.; Cappai, R. J. Neurochem. 1999, 73, 1557 DOI: 10.1046/j.1471-4159.1999.0731557.x.   DOI
17 Green, J.; Goldsbury, C.; Mini, T.; Sunderji, S.; Frey, P.; Kistler, J.; Cooper, G.; Aebi, U. J. Mol. Biol. 2003, 326, 1147, DOI: 10.1016/S0022-2836(02)01377-3.   DOI
18 Chiu, C.-C.; de Pablo J. J. AIP Adv. 2015, 5, 092501, DOI: 10.1063/1.4921073.   DOI
19 Sellin, D.; Yan, L.-M.; Kapurniotu, A.; Winter, R. Biophys. Chem. 2010, 150, 73, DOI: 10.1016/j.bpc.2010.01.006.   DOI
20 Wiltzius, J. J. W.; Sievers, S. A.; Sawaya, M. R.; Eisenberg, D. Protein Sci. 2009, 18, 1521, DOI: 10.1002/pro.145.   DOI
21 Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. O.; Riekel, C.; Grothe, R.; Eisenberg, D. Nature. 2005, 435, 773, DOI: 10.1038/nature03680.   DOI
22 Wang, H.; Ridgway, Z.; Cao, P.; Ruzsicska, B.; Raleigh, D. P. Biochemistry 2015, 54, 6704, DOI: 10.1021/acs.biochem.5b00567.   DOI
23 Middleton, C. T.; Marek, P.; Cao, P.; Chiu, C.-C.; Singh, S.; Woys, A. M.; de Pablo, J. J.; Raleigh, D. P.; Zanni, M. T. Nat. Chem. 2012, 4, 355, DOI: 10.1038/NCHEM.1293.   DOI
24 Bharadwaj, P.; Solomon, T.; Sahoo, B. R.; Ignasiak, K.; Gaskin, S.; Rowles, J.; Verdile, G.; Howard, M. J.; Bond, C. S.; Ramamoorthy, A.; Martins, R. N.; Newsholme, P. Sci. Rep. 2020, 10, 10356, DOI: 10.1038/s41598-020-66602-9.   DOI
25 Cooper, G. J. S.; Willis, A. C.; Clark, A.; Turner, R. C.; Sim, R. B.; Reid, K. B. M. Proc. Natl. Acad. Sci. USA. 1987, 84, 8628, DOI: 10.1073/pnas.84.23.8628.   DOI
26 Guo, J.; Sun, W.; Li, L.; Liu, F.; Lu, W. RSC Adv. 2017, 7, 43491, DOI: 10.1039/C7RA05742C.   DOI
27 Cao, P.; Meng, F.; Abedini, A.; Raleigh, D. P. Biochemistry 2010, 49, 872, DOI: 10.1021/bi901751b.   DOI
28 Nanga, R. P. R.; Brender, J. R.; Xu, J.; Hartman, K.; Subramanian, V.; and Ramamoorthy, A. J. Am. Chem. Soc. 2019, 131, 8252, DOI: 10.1021/ja9010095.   DOI