Browse > Article
http://dx.doi.org/10.5478/MSL.2021.12.2.41

Statistical Characterization of the Multi-Charged Fragment Ions in the CID and HCD Spectrum  

Ramachandran, Sangeetha (Department of Electronics, Cochin University of Science and Technology)
Thomas, Tessamma (Department of Electronics, Cochin University of Science and Technology)
Publication Information
Mass Spectrometry Letters / v.12, no.2, 2021 , pp. 41-46 More about this Journal
Abstract
Collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) are the widely used fragmentation technique in mass spectrometry-based proteomics studies. Understanding the fragmentation pattern from the tandem mass spectra using statistical methods helps to implement efficient spectrum analysis algorithms. The study characterizes the frequency of occurrence of multi-charged fragment ions and their neutral loss events of doubly and triply charged peptides in the CID and HCD spectrum. The dependency of the length of the fragment ion on the occurrence of multi-charged fragment ion is characterized here. Study shows that the singly charged fragment ions are generally dominated in the doubly charged peptide spectrum. However, as the length of the product ion increases, the frequency of occurrence of charge 2 fragment ions increases. The y- ions have more tendencies to generate charge 2 fragment ions than b- ions, both in CID and HCD spectrum. The frequency of occurrence of charge 2 fragment ion peaks is prominent upon the dissociation of the triply charged peptides. For triply charged peptides, product ion of higher length occurred in multiple charge states in CID spectrum. The neutral loss peaks mostly exist in charge 2 states in the triply charged peptide spectrum. The b-ions peaks are observed in much less frequency than y-ions in HCD spectrum as the length of the fragment increases. Isotopic peaks are occurred in charge 2 state both in doubly and triply charged peptide's HCD spectrum.
Keywords
CID; HCD; fragmentation pattern; multi-charged ions; LC-MS/MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ramachandran, S.; Thomas, T. Int. J. Mass Spectrom. 2020, 448, 116270, DOI: 10.1016/j.ijms.2019.116270.   DOI
2 Stein, S. E.; Pudnick, P. A. NIST Peptide Tandem Mass Spectral Libraries. Human Peptide Mass Spectral Reference Data, National Institute of Standards and Technology: Gaithersburg, MD, 2008, DOI: 10.18434/T4ZK5S.
3 Aebersold, R.; Mann, M. Nature 2003, 422, 198, DOI: 10.1038/nature01511.   DOI
4 Tabb, D. L.; Smith, L. L.; Breci, L. A.; Wyscocki, V. H.; Lin, D.; Yates, J. R. Anal. Chem. 2003, 75, 1155, DOI: 10.1021/ac026122m.   DOI
5 Loo, J. A.; Edmonds, C. G.; Smith, R. D. Anal. Chem. 1993, 65, 425, DOI: 10.1021/ac00052a020.   DOI
6 Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. J. Mass Spectrom. 2000, 35, 1399, DOI: DOI: 10.1002/1096-9888(200012)35:12<1399::AID-JMS86>3.0.CO;2-R.   DOI
7 Kapp, E. A. Schutz, F.; Reid, G. E.; Eddes, J. S.; Moritz, R. L.; O'Hair, R. A. J.; Speed, T. P.; Simpson, R. J. Anal. Chem. 2000, 75, 6251, DOI: 10.1021/ac034616t.   DOI
8 Huang, Y.; Triscari, J. M.; Tseng, G. C.; Pasa-Tolic, L,; Lipton, M. S.; Smith, R. D.; Wysocki, V. H. Anal. Chem. 2005, 77, 5800, DOI: 10.1021/ac0480949.   DOI
9 Huang, Y. Tseng, G. C.; Yuan, S.; Pasa-Tolic, L.; Lipton, M. S.; Smith, R. D.; Wysocki, V. H. J. Proteome Res. 2008, 7, 70, DOI; 10.1021/pr070106u.   DOI
10 Lau, K. W.; Hart, S. R.; Lynch, J. A.; Wong, S. C. C.; Hubbard, S. J.; Gaskell, S. J. Rapid Commun. Mass Spectrom. 2009, 23, 1508, DOI: 10.1002/rcm.4032.   DOI
11 Shao, C.; Zhang, Y.; Sun, W. J. Proteomics 2014, 109, 26, DOI: 10.1016/j.jprot.2014.06.012.   DOI
12 Ramachandran, S.; Thomas, T. 2019, 10, 7, DOI: 10.5478/MSL.2019.10.2.50.   DOI
13 Ramachandran, S.; Thomas, T. A ACS Omega 2020, 5, 12615, DOI: 10.1021/acsomega.9b03935.   DOI
14 Ramachandran, S.; Thomas, T. J. Proteomics 2021, 235, 104116, DOI: 10.1016/j.jprot.2021.104116.   DOI
15 Zolg, D. P.; Wilhelm, M.; Schnatbaum, K.; Zerweck, J.; Knaute, T.; Delanghe, D.; Bailey, D. J.; Gessulat, S.; Ehrlich, H.-C.; Weininger, M.; Yu, P.; Schlegl, J.; Kramer, K.; Schmidt, T.; Kusebauch, U.; Deutsch, E. W.; Aebersold, R.; Moritz, R. L.; Wenschuh, H.; Moehring, T.; Aiche, S.; Huhmer, A.; Reimer, U.; Kuster, B. Nat. Methods 2017, 14, 259, DOI: 10.1038/nmeth.4153.   DOI