• Title/Summary/Keyword: CID-MS/MS

Search Result 26, Processing Time 0.017 seconds

Structural determination of triterpenic acids in Prunellae Spica by fast atom bombardment tandem mass spectrometry (하고초의 생리활성 성분 Triterpenic Acids의 FAB-MS를 이용한 구조 규명)

  • Ahn, Young Min;Lee, Kang Ro;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.245-258
    • /
    • 2008
  • Five triterpenic acids as marker compounds were extracted and isolated from Prunellae Spica by column chromatography and reversed-phase high-performance liquid chromatography (HPLC), and their purity was determinated by HPLC (purity ${\geq}90%$). Molecular weight and elemental compositions of the five marker compounds were determined by fast atom bombardment high-resolution mass spectrometry (FAB-HRMS). The structural determination of the five marker compounds was carried out fast atom bombardment collision-induced dissociation tandem mass spectrometry (FAB-CID-MS/MS). The collision-induced dissociation (CID) of protonated molecules $[M+H]^+$ and deprotonated molecules $[M-H]^-$ produced diverse product ions due mainly to retro Diels-Alder reaction (RDA), dehydration and decarboxylation. Moreover, the CID-MS/MS spectra of the $[M-H]^-$ ions were observed charge-remote fragmentation (CRF) patterns. On the basis of interpretation of CID-MS/MS spectra, structural elucidation of triterpenic acids isolated from Prunellae Spica was clearly performed.

GC-MS/Ms Analysis of Benzo(a)pyrene by Ion Trap Tandem Mass Spectrometry

  • Nam, Jae-Jak;Lee, Sang-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1097-1102
    • /
    • 2002
  • The mass spectrometry using an ion trap tandem mass spectrometer has been investigated to find optimum conditions for the analysis of benzo(a)pyrene (3,4-benzpyrene). The applicability to a real soil sample was also investigated to verify the usef ulness of the MS/MS (or collision induced dissociation, CID) analysis. The optimum CID condition was 1.5 and 0.45 for the RF excitation voltage and the q value, respectively. For comparison, CID and EI were applied to the analysis of a soil sample. CID analysis was more sensitive than EI analysis of the soil sample. The limit of detection (LOD) of benzo(a)pyrene was 3.18 ng mL-1 and 0.85 ng mL,-1 for EI and MS/MS analysis, respectively. The precision at the soil sample for EI and CID showed relative standard deviations of 6.1% and 4.1%, respectively, and the concentrations were 168 ㎍ kg-1 and 162 ㎍ kg-1 , respectively.

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

  • Cha, Eugene;Seo, Jae-Hong;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 2018
  • Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

Electrospray ionization tandem mass fragmentation pattern of camostat and its degradation product, 4-(4-guanidinobenzoyloxy)phenylacetic acid (Camostat 및 분해산물 4-(4-guanidinobenzoyloxy)phenylacetic acid의 전자분무 이온화 텐덤 질량 fragmentation 패턴)

  • Kwon, Soon-Ho;Shin, Hye-Jin;Park, Ji-Myeong;Lee, Kyoung-Ryul;Kim, Young-Jin;Lee, Sang-Hoo
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.78-84
    • /
    • 2011
  • The fragmentation patterns of a serine protease inhibitor, camostat, and its degradation product, 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA), were for the first time investigated by a triple quadrupole tandem mass spectrometry equipped with an electrospray source (ESI-MS/MS) in positive and/or negative ion mode under collision-induced dissociation (CID). The positive CID spectrum of camostat showed distinctly that the single bond (C-O) cleavage between carbonyl group and oxygen atom of the ester bonds of the compound favorably occurred and then the loss of N,N-dimethylcarbamoylmethyl group was more susceptible than that of guanidine moiety. In the positive ion CID spectrum of GBPA, the initial cleavage between the carbonyl group and oxygen atom of 4-guanidinobenzoyloxy group also occurred, yielding the most abundant fragment ion at m/z 145. On the other hand, the negative CID spectrum of GBPA characteristically showed the occurrence of the most abundant peak at m/z 226 resulting from the sequential neutral losses of $CO_2$ and HN=C=NH from the parent ion at m/z 312.

Fragmentation Analysis of rIAPP Monomer, Dimer, and [MrIAPP + MhIAPP]5+ Using Collision-Induced Dissociation with Electrospray Ionization Mass Spectrometry

  • Kim, Jeongmo;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.179-185
    • /
    • 2021
  • Collision-induced dissociation (CID) combined with electrospray ionization mass spectrometry (ESI-MS) was used to obtain structural information on rat islet amyloid polypeptide (rIAPP) monomers (M) and dimers (D) observed in the multiply charged state in the MS spectrum. MS/MS analysis indicated that the rIAPP monomers adopt distinct structures depending on the molecular ion charge state. Peptide bond dissociation between L27 and P28 was observed in the MS/MS spectra of rIAPP monomers, regardless of the monomer molecular ion charge state. MS/MS analysis of the dimers indicated that D5+ comprised M2+ and M3+ subunits, and that the peptide bond dissociation process between the L27 and P28 residues of the monomer subunit was also maintained. The observation of (M+ b27)4+ and (M+ y10)3+ fragment ions were deduced to originate from the two different D5+ complex geometries, the N-terminal and C-terminal interaction geometries, respectively. The fragmentation pattern of the [MrIAPP + MhIAPP]5+ MS/MS spectrum showed that the interaction occurred between the two N-terminal regions of MrIAPP and MhIAPP in the heterogeneous dimer (hetero-dimer) D5+ structure.

Theoretical and Experimental 31P NMR and ESI-MS Study of Hg2+ Binding to Fenitrothion

  • Koo, In-Sun;Ali, Dildar;Yang, Ki-Yull;vanLoon, Gary W.;Buncel, Erwin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1257-1261
    • /
    • 2009
  • We present the theoretical and experimental results of $^{31}P$ NMR and low energy CID MS/MS study of $Hg^{2+}$ binding to fenitrothion (FN). The calculated $^{31}P$ NMR chemical shifts order for FN with $Hg^{2+}$ complex is in good agreement with experimental $^{31}P$ NMR chemical shifts order. The experimental and theoretical $^{31}P$ NMR study of organophosphorus pesticide with $Hg^{2+}$ gives to important information for organophosphorus pesticide metal complexes. ESI-MS and low energy CID MS/MS experiments of $Hg^{2+}$-FN complexes combined with accurate mass measurements give insight into the metal localization and allow unambiguous identification of fragments and hydrolysis products.

Statistical Characterization of the Multi-Charged Fragment Ions in the CID and HCD Spectrum

  • Ramachandran, Sangeetha;Thomas, Tessamma
    • Mass Spectrometry Letters
    • /
    • v.12 no.2
    • /
    • pp.41-46
    • /
    • 2021
  • Collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) are the widely used fragmentation technique in mass spectrometry-based proteomics studies. Understanding the fragmentation pattern from the tandem mass spectra using statistical methods helps to implement efficient spectrum analysis algorithms. The study characterizes the frequency of occurrence of multi-charged fragment ions and their neutral loss events of doubly and triply charged peptides in the CID and HCD spectrum. The dependency of the length of the fragment ion on the occurrence of multi-charged fragment ion is characterized here. Study shows that the singly charged fragment ions are generally dominated in the doubly charged peptide spectrum. However, as the length of the product ion increases, the frequency of occurrence of charge 2 fragment ions increases. The y- ions have more tendencies to generate charge 2 fragment ions than b- ions, both in CID and HCD spectrum. The frequency of occurrence of charge 2 fragment ion peaks is prominent upon the dissociation of the triply charged peptides. For triply charged peptides, product ion of higher length occurred in multiple charge states in CID spectrum. The neutral loss peaks mostly exist in charge 2 states in the triply charged peptide spectrum. The b-ions peaks are observed in much less frequency than y-ions in HCD spectrum as the length of the fragment increases. Isotopic peaks are occurred in charge 2 state both in doubly and triply charged peptide's HCD spectrum.

Comparison between Source-induced Dissociation and Collision-induced Dissociation of Ampicillin, Chloramphenicol, Ciprofloxacin, and Oxytetracycline via Mass Spectrometry

  • Lee, Seung Ha;Choi, Dal Woong
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.107-114
    • /
    • 2013
  • Mass spectrometry (MS) is a very powerful instrument that can be used to analyze a wide range of materials such as proteins, peptides, DNA, drugs, and polymers. The process typically involves either chemical or electron (impact) ionization of the analyte. The resulting charged species or fragment is subsequently identified by the detector. Usually, single mass uses source-induced dissociation (SID), whereas mass/mass uses collision-induced dissociation (CID) to analyze the chemical fragmentations Each technique has its own advantages and disadvantages. While CID is most effective for the analysis of pure substances, multiple-step MS is a powerful technique to get structural data. Analysis of veterinary drugs ampicillin, chloramphenicol, ciprofloxacin, and oxytetracycline serves to highlight the slight differences between SID and CID. For example, minor differences were observed between ciprofloxacin and oxytetracycline via SID or CID. However, distinct fragmentation patterns were observed for ampicllin depending on the analysis method. Both SID and CID showed similar fragmentation spectra but different signal intensities for chloramphenicol. There are several factors that can influence the fragmentation spectra, such as the collision energy, major precursor ion, electrospray mode (positive or negative), and sample homogeneity. Therefore, one must select a fragmentation method on an empirical and case-by-case basis.

Structural Determination of Fatty Acyl Groups of Phospholipids by Fast Atom Bombardment Tandem Mass Spectrometry of Sodium Adduct Molecular Ions

  • 김영환;유종신;김명수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.874-880
    • /
    • 1997
  • Various classes of phospholipids were investigated for the structural determination of fatty acyl groups by fast atom bombardment tandem mass spectrometry (FAB-MS/MS). Phospholipids were desorbed by FAB as molecules chelated with sodium ion (or ions). Collision-induced dissociation (CID) of intact sodium adduct molecular ions ([M+Na]+, [M-H+2Na]+ or [M+Na-2H]-) produced a series of homologous fragment ions via the charge-remote fragmentation along the fatty acid chains. These ions were found useful to locate the double bond positions even for the polyunsaturated fatty acid chains. The regiospecificity of the acyl chain linkages in phosphatidylcholine (PC) could also be determined based on the ratio of relative abundance of the product ions (i.e., [M+Na-85-R2COOH]+ vs [M+Na-85-R1COOH]+) in CID-MS/MS of [M+Na]+. These are generated by the loss of fatty acyl groups at sn-1 and sn-2, respectively, together with the choline group. In all the phospholipid compounds investigated, loss of the fatty acid at the sn-2 position was dominant. The present method was applied to the structural determination of molecular species of phosphatidylglycerols (PG) isolated from cyanobacterium Synechocystis sp. PCC 6803.

31P NMR and ESI-MS Study of Fenitrothion-Copper Ion Complex: Experimental and Theoretical Study

  • Choi, Ho-June;Yang, Ki-Yull;Park, Jong-Keun;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1339-1342
    • /
    • 2010
  • $^{31}P$ NMR and ESI-MS studies of $Cu^{2+}$ binding to Fenitrothion (FN) were performed by experimentally and theoretically. The calculated $^{31}P$ NMR chemical shifts for FN-$Cu^{2+}$ complexes are in good agreement with experimental chemical shifts in order, and the results present an important information for organophosphorus pesticide metal complexes. ESI-MS and low energy CID MS/MS experiments of FN-$Cu^{2+}$ complexes combined with accurate mass measurements give insight into the metal localization and allow unambiguous identification of fragments and hydrolysis products.