• Title/Summary/Keyword: CHD protein

Search Result 19, Processing Time 0.035 seconds

Identification of a novel mutation in the CHD7 gene in a patient with CHARGE syndrome

  • Kim, Yeonkyung;Lee, Ho-Seok;Yu, Jung-Seok;Ahn, Kangmo;Ki, Chang-Seok;Kim, Jihyun
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.1
    • /
    • pp.46-49
    • /
    • 2014
  • CHARGE syndrome has been estimated to occur in 1:10,000 births worldwide and shows various clinical manifestations. It is a genetic disorder characterized by a specific and a recognizable pattern of anomalies. The major clinical features are ocular coloboma, heart malformations, atresia of the choanae, growth retardation, genital hypoplasia, and ear abnormalities. The chromodomain helicase DNA-binding protein 7 (CHD7) gene, located on chromosome 8q12.1, causes CHARGE syndrome. The CHD7 protein is an adenosine triphosphate (ATP)-dependent chromatin remodeling protein. A total of 67% of patients clinically diagnosed with CHARGE syndrome have CHD7 mutations. Five hundred twenty-eight pathogenic and unique CHD7 alterations have been identified so far. We describe a patient with a CHARGE syndrome diagnosis who carried a novel de novo mutation, a c.3896T>C (p. leu1299Pro) missense mutation, in the CHD7 gene. This finding will provide more information for genetic counseling and expand our understanding of the pathogenesis and development of CHARGE syndrome.

Gender determination in parrots from Korean zoos using chromo-helicase-DNA binding protein 1 (CHD1) gene fragments

  • Kim, Jung-il;Do, Thinh Dinh;Choi, Tae-June;Yeo, Yonggu;Kim, Chang-Bae
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.350-354
    • /
    • 2020
  • Many parrots are considered endangered species due to threats from human activities. Gender determination is of great importance for biological studies and the conservation of endangered parrots. However, like other birds, gender determination in parrots is hindered due to the lack of external dimorphism between males and females. A molecular approach using the chromo-helicase-DNA binding protein 1 (CHD1) gene is commonly used for sexing birds. This study aimed to determine the gender of parrots from Korean zoos based on amplification and visualization of the partial CHD1 gene. The samples of 13 parrot species were collected from three different zoos in Korea and the extracted DNA templates were amplified using CHD1 gene primers. The gender of 27 samples of 13 species was determined by visualizing the PCR products on an agarose gel. While male parrots were indicated by a single band, female parrots were indicated by double bands. The findings provide additional information, which might be helpful for the management and care of parrots in Korean zoos.

Cholesteryl Ester Transfer Protein (CETP) Deficiency and CETP Inhibitors

  • Mabuchi, Hiroshi;Nohara, Atsushi;Inazu, Akihiro
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.777-784
    • /
    • 2014
  • Epidemiologic studies have shown that low-density lipoprotein cholesterol (LDL-C) is a strong risk factor, whilst high-density lipoprotein cholesterol (HDL-C) reduces the risk of coronary heart disease (CHD). Therefore, strategies to manage dyslipidemia in an effort to prevent or treat CHD have primarily attempted at decreasing LDL-C and raising HDL-C levels. Cholesteryl ester transfer protein (CETP) mediates the exchange of cholesteryl ester for triglycerides between HDL and VLDL and LDL. We have published the first report indicating that a group of Japanese patients who were lacking CETP had extremely high HDL-C levels, low LDL-C levels and a low incidence of CHD. Animal studies, as well as clinical and epidemiologic evidences, have suggested that inhibition of CETP provides an effective strategy to raise HDL-C and reduce LDL-C levels. Four CETP inhibitors have substantially increased HDL-C levels in dyslipidemic patients. This review will discuss the current status and future prospects of CETP inhibitors in the treatment of CHD. At present anacetrapib by Merck and evacetrapib by Eli Lilly are under development. By 100mg of anacetrapib HDL-C increased by 138%, and LDL-C decreased by 40%. Evacetrapib 500 mg also showed dramatic 132% increase of HDL-C, while LDL-C decreased by 40%. If larger, long-term, randomized, clinical end point trials could corroborate other findings in reducing atherosclerosis, CETP inhibitors could have a significant impact in the management of dyslipidemic CHD patients. Inhibition of CETP synthesis by antisense oligonucleotide or small molecules will produce more similar conditions to human CETP deficiency and may be effective in reducing atherosclerosis and cardiovascular events. We are expecting the final data of prospective clinical trials by CETP inhibitors in 2015.

Sex Identification of the First Incubated Chicks of the Crested Ibis Nipponia nippon in Korea (한국 최초 인공번식에 성공한 따오기의 성별구별)

  • Kim, Kyung-A;Cha, Jae-Seok;Kim, Tae-Jwa;Kim, Kyung-Min;Park, Hee-Cheon
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.626-630
    • /
    • 2011
  • In October 2008, a pair of Crested ibis Nipponia nippon, an endangered avian species in the world, was donated to Korea from China. They have since been the subject of a successful program to incubate chicks for the first time in South Korea. This study was carried out to determine the sex of chicks from the Crested ibis through polymerase chain reaction (PCR) using the sex-related gene and the chromodomain helicase DNA binding protein (CHD) gene. The result of the CHD gene, which was used with a single set of primers and a restriction enzyme treatment after the PCR process, was more accurate in identifying the gender of the Crested ibis. In addition, we compared the CHD gene sequences with the previously reported sequences and found 1~2 different bases between females (CI2, CI4, CI5, and CI6) than in studies previously reporting female sequences.

Chunghyuldan Downregulates the Activation of Transcription Factors NF - kB and AP-1 of BV-2 Cells Induced by Lipopolysaccharide

  • WEE Sung-SooK;BAE Eun-Ah;PARK Jin-Sun;KIM Hee-Sun;CHo Hee Jae;Ryu Jong-Hoon;KIM Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.214-219
    • /
    • 2005
  • Chunghyuldan (Qingxuedan in Chinese) (CHD) has been used for patients with atherosclerosis and brain ischemia in Korea. To evaluate antiischemic activity of CHD, its antiinflammatory effect in lipopolysaccharide-induced BV-2 cells was investigated. CHD potently inhibited nitric oxide (NO) production in LPS-induced BV-2 cells with an $IC_{50}$ value of 4.8${\mu}g/ml$. CHD did not only inhibit mRNA and protein expression levels of inducible NO synthase and cyclooxygenase-2 in LPS-induced BV-2 cells, but also repressed mRNA expression levels of proinflammatory cytokines IL-l$\beta$ and TNF-$\alpha$. CHD also downregulated the activation of NF-kB and AP-l transcription factors induced by LPS. These results suggest that CHD may improve inflammatory brain ischemia by the downregulation the activation of NF-kB and AP-l transcription factors.

Application of CRISPR-Cas9 gene editing for congenital heart disease

  • Seok, Heeyoung;Deng, Rui;Cowan, Douglas B.;Wang, Da-Zhi
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.6
    • /
    • pp.269-279
    • /
    • 2021
  • Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) is an ancient prokaryotic defense system that precisely cuts foreign genomic DNA under the control of a small number of guide RNAs. The CRISPR-Cas9 system facilitates efficient double-stranded DNA cleavage that has been recently adopted for genome editing to create or correct inherited genetic mutations causing disease. Congenital heart disease (CHD) is generally caused by genetic mutations such as base substitutions, deletions, and insertions, which result in diverse developmental defects and remains a leading cause of birth defects. Pediatric CHD patients exhibit a spectrum of cardiac abnormalities such as septal defects, valvular defects, and abnormal chamber development. CHD onset occurs during the prenatal period and often results in early lethality during childhood. Because CRISPR-Cas9-based genome editing technology has gained considerable attention for its potential to prevent and treat diseases, we will review the CRISPR-Cas9 system as a genome editing tool and focus on its therapeutic application for CHD.

Association between Periodontitis and Coronary heart disease in Korea : Inflammatory markers and IL-1 gene polymorphism (한국인에서 치주질환과 관상동맥질환의 관련성에 대한 염증표지자와 IL-1 유전자 다변성의 영향)

  • Jeong, Ha-Na;Chung, Hyun-Ju;Kim, Ok-Su;Kim, Young-Joon;Kim, Ju-Han;Koh, Jung-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.607-622
    • /
    • 2004
  • Recently epidemiologic studies have indicated that the patients with periodontitis may have increased risk of ischemic cardiovascular events, and have suggested the important roles of blood cytokines and acute reactant proteins in the systemic infection and inflammatory response. Periodontitis and coronary heart disease (CHD) may share the common risk factors and the genetic mechanism associated with interleukin(IL)-1A, B and RA genotype may be involved in the production of IL-1. This study was aimed to investigate the relationship between angiographically defined CHD and periodontitis as chronic Gram-negative bacterial infection and to determine whether the IL-1 gene polymorphism is associated in both diseases. Patients under the age of 60 who had undergone diagnostic coronary angiography were enrolled in this study. Subjects were classified as positive CHD (+CHD, n=37) with coronary artery stenosis more than 50% in at least one of major epicardial arteries, and negative CHD (-CHD, n=30) without significant stenosis. After recording the number of missing teeth, periodontal disease severity was measured by means of plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), clinical attachment level (CAL), and radiographic bone loss around all remaining teeth. Gingival crevicular fluid (GCF) was collected from the 4 deepest periodontal pockets and assessed for cytokine ($IL-1{\beta}$, IL-6, IL-1ra, tumor necrosis $factor-{\alpha}$, and prostaglandin $E_2$). Additionally, blood CHD markers, lipid profile, and blood cytokines were analyzed. IL-1 gene cluster genotyping was performed by polymerase chain reaction and enzyme restriction using genomic DNA from buccal swab, and allele 2 frequencies of IL-1A(+4845), IL-1B(+3954), IL-B(-511), and IL-1RA(intron 2) were compared between groups. Even though there was no significant difference in the periodontal parameters between 2 groups, GCF level of $PGE_2$ was significantly higher in the +CHD group(p<0.05). Correlation analysis showed the positive relationship among PD, CAL and coronary artery stenosis(%) and blood $PGE_2$. There was also significant positive relationship between the periodontal parameters (PI, PD, CAL) and the blood CHD markers (leukocyte count, C-reactive protein, and lactic dehyrogenase). IL-1 gene genotyping showed that IL-1A(+3954) allele 2 frequency was significantly higher in the +CHD group compared with the -CHD group (15% vs. 3.3%, OR 5.118,p=0.043). These results suggested that periodontal inflammation is related to systemic blood cytokine and CHD markers, and contributes to cardiovascular disease via systemic inflammatory reaction. IL-1 gene polymorphism might have an influence on periodontal and coronary heart diseases in Korean patients.

CHD4 Conceals Aberrant CTCF-Binding Sites at TAD Interiors by Regulating Chromatin Accessibility in Mouse Embryonic Stem Cells

  • Han, Sungwook;Lee, Hosuk;Lee, Andrew J.;Kim, Seung-Kyoon;Jung, Inkyung;Koh, Gou Young;Kim, Tae-Kyung;Lee, Daeyoup
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.805-829
    • /
    • 2021
  • CCCTC-binding factor (CTCF) critically contributes to 3D chromatin organization by determining topologically associated domain (TAD) borders. Although CTCF primarily binds at TAD borders, there also exist putative CTCF-binding sites within TADs, which are spread throughout the genome by retrotransposition. However, the detailed mechanism responsible for masking the putative CTCF-binding sites remains largely elusive. Here, we show that the ATP-dependent chromatin remodeler, chromodomain helicase DNA-binding 4 (CHD4), regulates chromatin accessibility to conceal aberrant CTCF-binding sites embedded in H3K9me3-enriched heterochromatic B2 short interspersed nuclear elements (SINEs) in mouse embryonic stem cells (mESCs). Upon CHD4 depletion, these aberrant CTCF-binding sites become accessible and aberrant CTCF recruitment occurs within TADs, resulting in disorganization of local TADs. RNA-binding intrinsically disordered domains (IDRs) of CHD4 are required to prevent this aberrant CTCF binding, and CHD4 is critical for the repression of B2 SINE transcripts. These results collectively reveal that a CHD4-mediated mechanism ensures appropriate CTCF binding and associated TAD organization in mESCs.

Purification and Characterization of Hrp1, a Homolog of Mouse CHD1 from the Fission Yeast Schizosaccharomyces pombe

  • Yong Hwan Jin;Eung Jae Yoo;Yeun Kyu Jang;Seung Hae Kim;Chee-Gun Lee;Rho Hyun Seong;Seung Hwan Hong;Sang Dai Park
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.539-543
    • /
    • 1998
  • Hrp1, of Schizosaccharomyces pombe, is a new member of the SW12/SNF2 protein family that contains a chromodomain and a DNA binding domain as well as ATPase/7 helicase domains. This configuration suggests that Hrp1 could be a homolog of mouse CHD1, which is thought to function in altering the chromatin structure to facilitate gene expression. To understand the enzymatic nature of Hrp1 we purified the 6-Histidine-tagged Hrp1 protein (6$\times$His-Hrp1) to homogeneity from a S. pombe Hrp1-overexpressing strain and hen examined its biochemical properties. We demonstrate that the purified 6$\times$His-Hrp1 protein exhibited a DNA-binding activity with a moderate preference to the (A+T)-rich tract in double-stranded NA via a minor groove interaction. However, we failed to detect any intrinsic DNA helicase activity from the purified Hrp1 like other SW12/SNF2 proteins. These observations suggest that the DNA binding activities of Hrp1 may be involved in the remodeling of the chromatin structure with DNA-dependent ATPase. We propose that Hrp1 may function in heterochromatins as other proteins with a chromo- or ATPase/helicase domain and play an important role in the determination of chromatin architecture.

  • PDF

The Study of Trnascriptional Regulated Gene, $hrp^{2+}$, in Yeast

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.111-115
    • /
    • 2001
  • This study was designed to clone the SNF2/SW12 helicase-related genes from the fission yeast Schizosaccha-romyces pombe and thereafter to elucidate the common functions of the proteins in this family. The $hrp^{2+}$gene was cloned by polymerase chain reaction amplification using degenerative primers from conserved SNF2 motifs within the ERCC6 gene, which encodes a protein involved in DNA excision repair. Like other SNF2/SW12 family proteins, the deduced amino acid sequence of Hrp2 contains DNA-dependent ATPase/7 helicase domains as well as the chromodomain and the DNA binding domain. This configuration is similar to that of mCHD1 (mouse chromo-ATPase/helicase-DNA-dinding protein 1), suggesting that Hrp2 is a S. pombe homolog of mCHD1, which is thought to function in altering the chromatin structure to control the gene expression. To characterize the function of Hrp2, 4 Uracil-Hrp2 fusion protein, it was purified near homogeneity by affinity chromatography on $Ni^{2+}$-NTA agarose, DEAE-Sepharose ion exchange arid Sephacryl S-200 gel filtration chromatographies. The purified fusion protein exhibited DNA-dependent ATPase activity, which was stimulated by both double-stranded and single-stranded DNA. To determine the steady-state level of $hrp^{2+}$ transcripts during growth, cells were cultured in medium and collected at every 2hr to prepare total RNAs. The northern blot analysis showed that the level of $hrp^{2+}$ transcripts reached its maximum before the cells entered the exponential growth phase and then decreased gradually, This result implies that Hrp2 may be required at early stages of cell growth.h.

  • PDF