DOI QR코드

DOI QR Code

CHD4 Conceals Aberrant CTCF-Binding Sites at TAD Interiors by Regulating Chromatin Accessibility in Mouse Embryonic Stem Cells

  • Han, Sungwook (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Hosuk (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Andrew J. (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kim, Seung-Kyoon (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Jung, Inkyung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Koh, Gou Young (Center for Vascular Research, Institute for Basic Sciences) ;
  • Kim, Tae-Kyung (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Lee, Daeyoup (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Received : 2021.08.31
  • Accepted : 2021.09.06
  • Published : 2021.11.30

Abstract

CCCTC-binding factor (CTCF) critically contributes to 3D chromatin organization by determining topologically associated domain (TAD) borders. Although CTCF primarily binds at TAD borders, there also exist putative CTCF-binding sites within TADs, which are spread throughout the genome by retrotransposition. However, the detailed mechanism responsible for masking the putative CTCF-binding sites remains largely elusive. Here, we show that the ATP-dependent chromatin remodeler, chromodomain helicase DNA-binding 4 (CHD4), regulates chromatin accessibility to conceal aberrant CTCF-binding sites embedded in H3K9me3-enriched heterochromatic B2 short interspersed nuclear elements (SINEs) in mouse embryonic stem cells (mESCs). Upon CHD4 depletion, these aberrant CTCF-binding sites become accessible and aberrant CTCF recruitment occurs within TADs, resulting in disorganization of local TADs. RNA-binding intrinsically disordered domains (IDRs) of CHD4 are required to prevent this aberrant CTCF binding, and CHD4 is critical for the repression of B2 SINE transcripts. These results collectively reveal that a CHD4-mediated mechanism ensures appropriate CTCF binding and associated TAD organization in mESCs.

Keywords

Acknowledgement

We thank Taemook Kim and Prof. Keunsoo Kang for assistance with analyzing the NGS data; Kwang-Beom Hyun and Prof. Jaehoon Kim for purification of CHD4 protein using the Bac-to-Bac Baculovirus expression system (Full-length cDNA of mouse Chd4 was purchased from Open Biosystems, MMM1013-202770503). This work was supported by a National Research Foundation of Korea grant funded by the Ministry of Science and ICT (MSIT) (2018R1A5A1024261, SRC), and the Collaborative Genome Program for Fostering New Post-Genome Industry of the National Research Foundation (NRF) funded by the MSIT (2018M3C9A6065070).

References

  1. Acemel, R.D., Maeso, I., and Gomez-Skarmeta, J.L. (2017). Topologically associated domains: a successful scaffold for the evolution of gene regulation in animals. Wiley Interdiscip. Rev. Dev. Biol. 6, e265.
  2. Allen, T.A., Von Kaenel, S., Goodrich, J.A., and Kugel, J.F. (2004). The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat. Struct. Mol. Biol. 11, 816-821. https://doi.org/10.1038/nsmb813
  3. Ang, Y.S., Tsai, S.Y., Lee, D.F., Monk, J., Su, J., Ratnakumar, K., Ding, J., Ge, Y., Darr, H., Chang, B., et al. (2011). Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183-197. https://doi.org/10.1016/j.cell.2011.03.003
  4. Blosser, T.R., Yang, J.G., Stone, M.D., Narlikar, G.J., and Zhuang, X. (2009). Dynamics of nucleosome remodelling by individual ACF complexes. Nature 462, 1022-1027. https://doi.org/10.1038/nature08627
  5. Bourque, G., Leong, B., Vega, V.B., Chen, X., Lee, Y.L., Srinivasan, K.G., Chew, J.L., Ruan, Y., Wei, C.L., Ng, H.H., et al. (2008). Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752-1762. https://doi.org/10.1101/gr.080663.108
  6. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213-1218. https://doi.org/10.1038/nmeth.2688
  7. Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1-21.29.9.
  8. Choi, W.Y., Hwang, J.H., Cho, A.N., Lee, A.J., Jung, I., Cho, S.W., Kim, L.K., and Kim, Y.J. (2020). NEUROD1 intrinsically initiates differentiation of induced pluripotent stem cells into neural progenitor cells. Mol. Cells 43, 1011-1022. https://doi.org/10.14348/molcells.2020.0207
  9. Core, L.J., Waterfall, J.J., and Lis, J.T. (2008). Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845-1848. https://doi.org/10.1126/science.1162228
  10. Cremer, T. and Cremer, M. (2010). Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889. https://doi.org/10.1101/cshperspect.a003889
  11. Cuddapah, S., Jothi, R., Schones, D.E., Roh, T.Y., Cui, K., and Zhao, K. (2009). Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 19, 24-32. https://doi.org/10.1101/gr.082800.108
  12. Danko, C.G., Hah, N., Luo, X., Martins, A.L., Core, L., Lis, J.T., Siepel, A., and Kraus, W.L. (2013). Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol. Cell 50, 212-222. https://doi.org/10.1016/j.molcel.2013.02.015
  13. de Dieuleveult, M., Yen, K., Hmitou, I., Depaux, A., Boussouar, F., Bou Dargham, D., Jounier, S., Humbertclaude, H., Ribierre, F., Baulard, C., et al. (2016). Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature 530, 113-116. https://doi.org/10.1038/nature16505
  14. de Wit, E., Vos, E.S., Holwerda, S.J., Valdes-Quezada, C., Verstegen, M.J., Teunissen, H., Splinter, E., Wijchers, P.J., Krijger, P.H., and de Laat, W. (2015). CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676-684. https://doi.org/10.1016/j.molcel.2015.09.023
  15. Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380. https://doi.org/10.1038/nature11082
  16. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. https://doi.org/10.1093/bioinformatics/bts635
  17. Dowen, J.M., Fan, Z.P., Hnisz, D., Ren, G., Abraham, B.J., Zhang, L.N., Weintraub, A.S., Schujiers, J., Lee, T.I., Zhao, K., et al. (2014). Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374-387. https://doi.org/10.1016/j.cell.2014.09.030
  18. Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S., Huntley, M.H., Lander, E.S., and Aiden, E.L. (2016). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95-98. https://doi.org/10.1016/j.cels.2016.07.002
  19. Espinoza, C.A., Allen, T.A., Hieb, A.R., Kugel, J.F., and Goodrich, J.A. (2004). B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat. Struct. Mol. Biol. 11, 822-829. https://doi.org/10.1038/nsmb812
  20. Gaspar-Maia, A., Alajem, A., Polesso, F., Sridharan, R., Mason, M.J., Heidersbach, A., Ramalho-Santos, J., McManus, M.T., Plath, K., Meshorer, E., et al. (2009). Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460, 863-868. https://doi.org/10.1038/nature08212
  21. Goodman, J.V., Yamada, T., Yang, Y., Kong, L., Wu, D.Y., Zhao, G., Gabel, H.W., and Bonni, A. (2020). The chromatin remodeling enzyme Chd4 regulates genome architecture in the mouse brain. Nat. Commun. 11, 3419. https://doi.org/10.1038/s41467-020-17065-z
  22. Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D.U., Jung, I., Wu, H., Zhai, Y., Tang, Y., et al. (2015). CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900-910. https://doi.org/10.1016/j.cell.2015.07.038
  23. Hall, J.A. and Georgel, P.T. (2007). CHD proteins: a diverse family with strong ties. Biochem. Cell Biol. 85, 463-476. https://doi.org/10.1139/O07-063
  24. He, C., Sidoli, S., Warneford-Thomson, R., Tatomer, D.C., Wilusz, J.E., Garcia, B.A., and Bonasio, R. (2016). High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol. Cell 64, 416-430. https://doi.org/10.1016/j.molcel.2016.09.034
  25. Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589. https://doi.org/10.1016/j.molcel.2010.05.004
  26. Hendrickson, D., Kelley, D.R., Tenen, D., Bernstein, B., and Rinn, J.L. (2016). Widespread RNA binding by chromatin-associated proteins. Genome Biol. 17, 28. https://doi.org/10.1186/s13059-016-0878-3
  27. Heo, J.B. and Sung, S. (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76-79. https://doi.org/10.1126/science.1197349
  28. Ishihara, K., Oshimura, M., and Nakao, M. (2006). CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol. Cell 23, 733-742. https://doi.org/10.1016/j.molcel.2006.08.008
  29. Ji, X., Dadon, D.B., Powell, B.E., Fan, Z.P., Borges-Rivera, D., Shachar, S., Weintraub, A.S., Hnisz, D., Pegoraro, G., Lee, T.I., et al. (2016). 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell 18, 262-275. https://doi.org/10.1016/j.stem.2015.11.007
  30. Kaaij, L.J.T., Mohn, F., van der Weide, R.H., de Wit, E., and Buhler, M. (2019). The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437-1451.e14. https://doi.org/10.1016/j.cell.2019.08.007
  31. Kaplan, N., Moore, I.K., Fondufe-Mittendorf, Y., Gossett, A.J., Tillo, D., Field, Y., LeProust, E.M., Hughes, T.R., Lieb, J.D., Widom, J., et al. (2009). The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362-366. https://doi.org/10.1038/nature07667
  32. Kent, W.J., Zweig, A.S., Barber, G., Hinrichs, A.S., and Karolchik, D. (2010). BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204-2207. https://doi.org/10.1093/bioinformatics/btq351
  33. Kim, S.K., Jung, I., Lee, H., Kang, K., Kim, M., Jeong, K., Kwon, C.S., Han, Y.M., Kim, Y.S., Kim, D., et al. (2012). Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression. J. Biol. Chem. 287, 39698-39709. https://doi.org/10.1074/jbc.M112.384057
  34. Kim, S.K., Lee, H., Han, K., Kim, S.C., Choi, Y., Park, S.W., Bak, G., Lee, Y., Choi, J.K., Kim, T.K., et al. (2014). SET7/9 methylation of the pluripotency factor LIN28A is a nucleolar localization mechanism that blocks let-7 biogenesis in human ESCs. Cell Stem Cell 15, 735-749. https://doi.org/10.1016/j.stem.2014.10.016
  35. Lam, M.T., Cho, H., Lesch, H.P., Gosselin, D., Heinz, S., Tanaka-Oishi, Y., Benner, C., Kaikkonen, M.U., Kim, A.S., Kosaka, M., et al. (2013). Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498, 511-515. https://doi.org/10.1038/nature12209
  36. Langmead, B. and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359. https://doi.org/10.1038/nmeth.1923
  37. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293. https://doi.org/10.1126/science.1181369
  38. Lin, Y.H., Forman-Kay, J.D., and Chan, H.S. (2016). Sequence-specific polyampholyte phase separation in membraneless organelles. Phys. Rev. Lett. 117, 178101. https://doi.org/10.1103/physrevlett.117.178101
  39. Luppino, J.M., Park, D.S., Nguyen, S.C., Lan, Y., Xu, Z., Yunker, R., and Joyce, E.F. (2020). Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes. Nat. Genet. 52, 840-848. https://doi.org/10.1038/s41588-020-0647-9
  40. Martens, J.H., O'Sullivan, R.J., Braunschweig, U., Opravil, S., Radolf, M., Steinlein, P., and Jenuwein, T. (2005). The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800-812. https://doi.org/10.1038/sj.emboj.7600545
  41. McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. U. S. A. 36, 344-355. https://doi.org/10.1073/pnas.36.6.344
  42. McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., and Bejerano, G. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495-501. https://doi.org/10.1038/nbt.1630
  43. Meers, M.P., Bryson, T.D., Henikoff, J.G., and Henikoff, S. (2019). Improved CUT&RUN chromatin profiling tools. Elife 8, e46314. https://doi.org/10.7554/eLife.46314
  44. Micucci, J.A., Sperry, E.D., and Martin, D.M. (2015). Chromodomain helicase DNA-binding proteins in stem cells and human developmental diseases. Stem Cells Dev. 24, 917-926. https://doi.org/10.1089/scd.2014.0544
  45. Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., and Taylor, J.P. (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133. https://doi.org/10.1016/j.cell.2015.09.015
  46. Morris, S.A., Baek, S., Sung, M.H., John, S., Wiench, M., Johnson, T.A., Schiltz, R.L., and Hager, G.L. (2014). Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat. Struct. Mol. Biol. 21, 73-81. https://doi.org/10.1038/nsmb.2718
  47. Narlikar, G.J., Phelan, M.L., and Kingston, R.E. (2001). Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8, 1219-1230. https://doi.org/10.1016/S1097-2765(01)00412-9
  48. Natsume, T., Kiyomitsu, T., Saga, Y., and Kanemaki, M.T. (2016). Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 15, 210-218. https://doi.org/10.1016/j.celrep.2016.03.001
  49. Nora, E.P., Goloborodko, A., Valton, A.L., Gibcus, J.H., Uebersohn, A., Abdennur, N., Dekker, J., Mirny, L.A., and Bruneau, B.G. (2017). Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930-944.e22. https://doi.org/10.1016/j.cell.2017.05.004
  50. Nora, E.P., Lajoie, B.R., Schulz, E.G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N.L., Meisig, J., Sedat, J., et al. (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381-385. https://doi.org/10.1038/nature11049
  51. Ong, C.T. and Corces, V.G. (2014). CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet. 15, 234-246. https://doi.org/10.1038/nrg3663
  52. Ostapcuk, V., Mohn, F., Carl, S.H., Basters, A., Hess, D., Iesmantavicius, V., Lampersberger, L., Flemr, M., Pandey, A., Thoma, N.H., et al. (2018). Activity-dependent neuroprotective protein recruits HP1 and CHD4 to control lineage-specifying genes. Nature 557, 739-743. https://doi.org/10.1038/s41586-018-0153-8
  53. Owen-Hughes, T., Utley, R.T., Steger, D.J., West, J.M., John, S., Cote, J., Havas, K.M., and Workman, J.L. (1999). Analysis of nucleosome disruption by ATP-driven chromatin remodeling complexes. Methods Mol. Biol. 119, 319-331.
  54. Piovesan, D., Necci, M., Escobedo, N., Monzon, A.M., Hatos, A., Micetic, I., Quaglia, F., Paladin, L., Ramasamy, P., Dosztanyi, Z., et al. (2021). MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res. 49(D1), D361-D367. https://doi.org/10.1093/nar/gkaa1058
  55. Piovesan, D., Tabaro, F., Paladin, L., Necci, M., Micetic, I., Camilloni, C., Davey, N., Dosztanyi, Z., Meszaros, B., Monzon, A.M., et al. (2018). MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res. 46(D1), D471-D476. https://doi.org/10.1093/nar/gkx1071
  56. Pohl, A. and Beato, M. (2014). bwtool: a tool for bigWig files. Bioinformatics 30, 1618-1619. https://doi.org/10.1093/bioinformatics/btu056
  57. Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680. https://doi.org/10.1016/j.cell.2014.11.021
  58. Rao, S.S.P., Huang, S.C., Glenn St Hilaire, B., Engreitz, J.M., Perez, E.M., Kieffer-Kwon, K.R., Sanborn, A.L., Johnstone, S.E., Bascom, G.D., Bochkov, I.D., et al. (2017). Cohesin loss eliminates all loop domains. Cell 171, 305-320.e24. https://doi.org/10.1016/j.cell.2017.09.026
  59. Rippe, K., Schrader, A., Riede, P., Strohner, R., Lehmann, E., and Langst, G. (2007). DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc. Natl. Acad. Sci. U. S. A. 104, 15635-15640. https://doi.org/10.1073/pnas.0702430104
  60. Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, J.P. (2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24-26. https://doi.org/10.1038/nbt.1754
  61. Saldanha, A.J. (2004). Java Treeview--extensible visualization of microarray data. Bioinformatics 20, 3246-3248. https://doi.org/10.1093/bioinformatics/bth349
  62. Sanborn, A.L., Rao, S.S., Huang, S.C., Durand, N.C., Huntley, M.H., Jewett, A.I., Bochkov, I.D., Chinnappan, D., Cutkosky, A., Li, J., et al. (2015). Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. U. S. A. 112, E6456-E6465. https://doi.org/10.1073/pnas.1518552112
  63. Schmidt, D., Schwalie, P.C., Wilson, M.D., Ballester, B., Goncalves, A., Kutter, C., Brown, G.D., Marshall, A., Flicek, P., and Odom, D.T. (2012). Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335-348. https://doi.org/10.1016/j.cell.2011.11.058
  64. Schwarzer, W., Abdennur, N., Goloborodko, A., Pekowska, A., Fudenberg, G., Loe-Mie, Y., Fonseca, N.A., Huber, W., Haering, C.H., Mirny, L., et al. (2017). Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51-56. https://doi.org/10.1038/nature24281
  65. Segal, E. and Widom, J. (2009). Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr. Opin. Struct. Biol. 19, 65-71. https://doi.org/10.1016/j.sbi.2009.01.004
  66. Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.J., Vert, J.P., Heard, E., Dekker, J., and Barillot, E. (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259. https://doi.org/10.1186/s13059-015-0831-x
  67. Shazman, S., Celniker, G., Haber, O., Glaser, F., and Mandel-Gutfreund, Y. (2007). Patch Finder Plus (PFplus): a web server for extracting and displaying positive electrostatic patches on protein surfaces. Nucleic Acids Res. 35(Web Server issue), W526-W530. https://doi.org/10.1093/nar/gkm401
  68. Shazman, S. and Mandel-Gutfreund, Y. (2008). Classifying RNA-binding proteins based on electrostatic properties. PLoS Comput. Biol. 4, e1000146. https://doi.org/10.1371/journal.pcbi.1000146
  69. Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, B., and de Laat, W. (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348-1354. https://doi.org/10.1038/ng1896
  70. Skene, P.J. and Henikoff, S. (2017). An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, e21856. https://doi.org/10.7554/elife.21856
  71. Skene, P.J., Hernandez, A.E., Groudine, M., and Henikoff, S. (2014). The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. Elife 3, e02042. https://doi.org/10.7554/elife.02042
  72. Som, A., Harder, C., Greber, B., Siatkowski, M., Paudel, Y., Warsow, G., Cap, C., Scholer, H., and Fuellen, G. (2010). The PluriNetWork: an electronic representation of the network underlying pluripotency in mouse, and its applications. PLoS One 5, e15165. https://doi.org/10.1371/journal.pone.0015165
  73. Splinter, E., Heath, H., Kooren, J., Palstra, R.J., Klous, P., Grosveld, F., Galjart, N., and de Laat, W. (2006). CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 20, 2349-2354. https://doi.org/10.1101/gad.399506
  74. Szabo, Q., Donjon, A., Jerkovic, I., Papadopoulos, G.L., Cheutin, T., Bonev, B., Nora, E.P., Bruneau, B.G., Bantignies, F., and Cavalli, G. (2020). Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nat. Genet. 52, 1151-1157. https://doi.org/10.1038/s41588-020-00716-8
  75. Tillo, D. and Hughes, T.R. (2009). G+C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics 10, 442. https://doi.org/10.1186/1471-2105-10-442
  76. Valouev, A., Johnson, S.M., Boyd, S.D., Smith, C.L., Fire, A.Z., and Sidow, A. (2011). Determinants of nucleosome organization in primary human cells. Nature 474, 516-520. https://doi.org/10.1038/nature10002
  77. van der Weide, R.H., van den Brand, T., Haarhuis, J.H.I., Teunissen, H., Rowland, B.D., and de Wit, E. (2021). Hi-C analyses with GENOVA: a case study with cohesin variants. NAR Genom. Bioinform. 3, lqab040. https://doi.org/10.1093/nargab/lqab040
  78. van Vugt, J.J., de Jager, M., Murawska, M., Brehm, A., van Noort, J., and Logie, C. (2009). Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS One 4, e6345. https://doi.org/10.1371/journal.pone.0006345
  79. Varshney, D., Vavrova-Anderson, J., Oler, A.J., Cowling, V.H., Cairns, B.R., and White, R.J. (2015). SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat. Commun. 6, 6569. https://doi.org/10.1038/ncomms7569
  80. Vietri Rudan, M., Barrington, C., Henderson, S., Ernst, C., Odom, D.T., Tanay, A., and Hadjur, S. (2015). Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297-1309. https://doi.org/10.1016/j.celrep.2015.02.004
  81. Wendt, K.S., Yoshida, K., Itoh, T., Bando, M., Koch, B., Schirghuber, E., Tsutsumi, S., Nagae, G., Ishihara, K., Mishiro, T., et al. (2008). Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796-801. https://doi.org/10.1038/nature06634
  82. Wickham., H. (2009). ggplot2: Elegant Graphics for Data Analysis (New York: Springer-Verlag).
  83. Wiechens, N., Singh, V., Gkikopoulos, T., Schofield, P., Rocha, S., and Owen-Hughes, T. (2016). The chromatin remodelling enzymes SNF2H and SNF2L position nucleosomes adjacent to CTCF and other transcription factors. PLoS Genet. 12, e1005940. https://doi.org/10.1371/journal.pgen.1005940
  84. Zhan, Y., Mariani, L., Barozzi, I., Schulz, E.G., Bluthgen, N., Stadler, M., Tiana, G., and Giorgetti, L. (2017). Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res. 27, 479-490. https://doi.org/10.1101/gr.212803.116
  85. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137. https://doi.org/10.1186/gb-2008-9-9-r137
  86. Zhao, H., Han, Z., Liu, X., Gu, J., Tang, F., Wei, G., and Jin, Y. (2017). The chromatin remodeler Chd4 maintains embryonic stem cell identity by controlling pluripotency- and differentiation-associated genes. J. Biol. Chem. 292, 8507-8519. https://doi.org/10.1074/jbc.M116.770248