References
- Agellon, L.B., Walsh, A., Hayek, T., Moulin, P., Jiang, X.C., Shelanski, S.A., Breslow, J.L., and Tall, A.R. (1991). Reduced high-density lipoprotein cholesterol in human cholesteryl ester transfer protein transgenic mice. J. Biol. Chem. 266, 10796-10801.
- Barter, P.J., Brewer, H.B. Jr., Chapman, M.J., Hennekens, C.H., Rader, D.J., and Tall, A.R. (2003). Cholesteryl ester transfer protein:a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 160-167. https://doi.org/10.1161/01.ATV.0000054658.91146.64
- Bell, T.A., Graham, M.J., Lee, R.G., Mullick, A.E., Fu, W., Norris, D., and Crooke, R.M. (2013). Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances RCT in hyperlipidemic, CETP transgenic, LDLr-/- mice. J. Lipid Res. 54, 2647-2657. https://doi.org/10.1194/jlr.M036509
- Brewer, H.B. Jr. (2004). Increasing HDL cholesterol levels. N. Engl. J. Med. 350, 1491-1494. https://doi.org/10.1056/NEJMp048023
- Brousseau, M.E., Schaefer, E.J., Wolfe, M.L., Bloedon, L.T., Digenio, A.G., Clark, R.W., Mancuso, J.P., and Rader, D.J. (2004). Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. 350, 1505-1515. https://doi.org/10.1056/NEJMoa031766
- Brown, M.L., Inazu, A., Hesler, C.B., Agellon, L.B., Mann, C., Whitlock, M.E., Marcel, Y.L., Milne, R.W., Koizumi, J., Mabuchi, H., et al. (1989). Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342, 448-451. https://doi.org/10.1038/342448a0
- Curb, J.D., Abbott, R.D., Rodriguez, B.L., Masaki, K., Chen, R., Sharp, D.S., and Tall, A.R. (2004). A prospective study of HDLC and cholesteryl ester transfer protein gene mutations and the risk of coronary heart disease in the elderly. J. Lipid Res. 45, 948-953. https://doi.org/10.1194/jlr.M300520-JLR200
- de Grooth, G.J., Smilde, T.J., Van Wissen, S., Klerkx, A.H., Zwinderman, A.H., Fruchart, J.C., Kastelein, J.J., Stalenhoef, A.F., and Kuivenhoven, J.A. (2004). The relationship between cholesteryl ester transfer protein levels and risk factor profile in patients with familial hypercholesterolemia. Atherosclerosis 173, 261-267. https://doi.org/10.1016/j.atherosclerosis.2003.11.020
- Downs, J.R., Clearfield, M., Weis, S., Whitney, E., Shapiro, D.R., Beere, P.A., Langendorfer, A., Stein, E.A., Kruyer, W., Gotto, A.M. Jr., et al. (1998). Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 279, 1615-1622. https://doi.org/10.1001/jama.279.20.1615
- Gaynor, B.J., Sand, T., Clark, R.W., Aiello, R.J., Bamberger, M.J., and Moberly, J.B. (1994). Inhibition of cholesteryl ester transfer protein activity in hamsters alters HDL lipid composition. Atherosclerosis 110, 101-109. https://doi.org/10.1016/0021-9150(94)90073-6
-
Glueck, C.J., Gartside, P., Fallat, R.W., Sielski, J., and Steiner, P.M. (1976). Longevity syndromes: familial hypo-
$\beta$ and familial hyper-$\alpha$ -lipoproteinemia. J. Lab. Clin. Med. 88, 941-957. - Gordon, T., Kannel, W.B., Castelli, W.P., and Dawber, T.R. (1981). Lipoproteins, cardiovascular disease, and death. The Framingham study. Arch. Intern. Med. 141, 1128-1131. https://doi.org/10.1001/archinte.1981.00340090024008
- Ha, Y.C., and Barter, P.J. (1982). Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp. Biochem. Physiol. B. 71, 265-269. https://doi.org/10.1016/0300-9629(82)90398-X
- Han K.H., Park, Y.B., Chae, I.H., Kim, H.S., Sohn, D.W., Oh, B.H., Lee, M.M, Choi, Y.S., Seo, J.D., Lee, Y.W., et al. (1996). CETP (cholesteryl esters transfer protein) deficiency caused by genetic mutation in the CETP gene in normal Korean population. Korean Circ. J. 26, 500-506. https://doi.org/10.4070/kcj.1996.26.2.500
- Haraki, T., Inazu, A., Yagi, K., Kajinami, K., Koizumi, J., and Mabuchi, H. (1997). Clinical characteristics of double heterozygotes with familial hypercholesterolemia and cholesteryl ester transfer protein deficiency. Atherosclerosis 132, 229-236. https://doi.org/10.1016/S0021-9150(97)00093-2
- Hirano, K., Yamashita, S., Kuga, Y., Sakai, N., Nozaki, S., Kihara, S., Arai, T., Yanagi, K., Takami, S., Menju, M., et al. (1995). Atherosclerotic disease in marked hyperalphalipoproteinemia. Combined reduction of cholesteryl ester transfer protein and hepatic triglyceride lipase. Arterioscler. Thromb. Vasc. Biol. 15, 1849-1856. https://doi.org/10.1161/01.ATV.15.11.1849
- Hirano, K., Yamashita, S., Nakajima, N., Arai, T., Maruyama, T., Yoshida, Y., Ishigami, M., Sakai, N., Kameda-Takemura, K., and Matsuzawa, Y. (1997). Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler. Thromb. Vasc. Biol. 17, 1053-1059. https://doi.org/10.1161/01.ATV.17.6.1053
- Huang, Z., Inazu, A., Nohara, A., Higashikata, T., and Mabuchi, H. (2002). Cholesteryl ester transfer protein inhibitor (JTT-705) and the development of atherosclerosis in rabbits with severe hypercholesterolaemia. Clin. Sci. (Lond). 103, 587-594. https://doi.org/10.1042/cs1030587
- Inazu, A.1., and Mabuchi, H. (2003). Therapeutic implications of cholesteryl ester transfer protein inhibitors in hyperlipidemia and low high-density lipoprotein-cholesterolemia. Curr. Opin. Investig. Drugs 4, 291-297.
- Inazu, A.1., Brown, M.L., Hesler, C.B., Agellon, L.B., Koizumi, J., Takata, K., Maruhama, Y., Mabuchi, H., and Tall, A.R. (1990). Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 323, 1234-1238. https://doi.org/10.1056/NEJM199011013231803
- Inazu, A.1., Jiang, X.C., Haraki, T., Yagi, K., Kamon, N., Koizumi, J., Mabuchi, H., Takeda, R., Takata, K., Moriyama, Y., et al. (1994). Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high-density lipoprotein cholesterol. J. Clin. Invest. 94, 1872-1882. https://doi.org/10.1172/JCI117537
- Kastelein, J.J., van Leuven, S.I., Burgess, L., Evans, G.W., Kuivenhoven, J.A., Barter, P.J., Revkin, J.H., Grobbee, D.E., Riley, W.A., Shear, C.L., et al. (2007). Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med. 356, 1620-1630. https://doi.org/10.1056/NEJMoa071359
- Koizumi, J., Mabuchi, H., Yoshimura, A., Michishita, I., Takeda, M., Itoh, H., Sakai, Y., Sakai, T., Ueda, K., and Takeda, R. (1985). Deficiency of serum cholesteryl-ester transfer activity in patients with familial hyperalphalipoproteinaemia. Atherosclerosis 58, 175-186. https://doi.org/10.1016/0021-9150(85)90064-4
- Linsel-Nitschke P.I., and Tall A.R. (2005). HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat. Rev. Drug Discov. 4, 193-205. https://doi.org/10.1038/nrd1658
- Marotti, K.R., Castle, C.K., Boyle, T.P., Lin, A.H., Murray, R.W., and Melchior, G.W. (1993). Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 364, 73-75. https://doi.org/10.1038/364073a0
- Matsuura, F., Wang, N., Chen, W., Jiang, X.C., and Tall, A.R. (2006). HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J. Clin. Invest. 116, 1435-1442. https://doi.org/10.1172/JCI27602
- Miwa, K., Inazu, A., Kawashiri, M., Nohara, A., Higashikata, T., Kobayashi, J., Koizumi, J., Nakajima, K., Nakano, T., Niimi, M., et al. (2009). Cholesterol efflux from J774 macrophages and Fu5AH hepatoma cells to serum is preserved in CETP-deficient patients. Clin. Chim. Acta 402, 19-24. https://doi.org/10.1016/j.cca.2008.12.012
- Moriyama, Y., Okamura, T., Inazu, A., Doi, M., Iso, H., Mouri, Y., Ishikawa, Y., Suzuki, H., Iida, M., Koizumi, J., et al. (1998). A low prevalence of coronary heart disease among subjects with increased high-density lipoprotein cholesterol levels, including those with plasma cholesteryl ester transfer protein deficiency. Prev. Med. 27, 659-667. https://doi.org/10.1006/pmed.1998.0340
- National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). (2002). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation 106, 3143-3421.
- Nissen, SE., Tardif, J.C., Nicholls, S.J., Revkin, J.H., Shear, C.L., Duggan, W.T., Ruzyllo, W., Bachinsky, W.B., Lasala, G.P., Tuzcu, E.M., et al. (2007). Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304-1316. https://doi.org/10.1056/NEJMoa070635
- Okamoto, H., Yonemori, F., Wakitani, K., Minowa, T., Maeda, K., and Shinkai, H. (2000). A cholesteryl ester transfer protein in hibitor attenuates atherosclerosis in rabbits. Nature 406, 203-207. https://doi.org/10.1038/35018119
- Olsson, A.G., Schwartz, G.G., Szarek, M., Sasiela, W.J., Ezekowitz, M.D., Ganz, P., Oliver, M.F., Waters, D., and Zeiher, A. (2005). High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: results from the MIRACLE trial. Eur. Heart J. 26, 890-896. https://doi.org/10.1093/eurheartj/ehi186
- Pedersen, T.R., Kjekshus, J., Berg, K., Haghfelt, T., Faergeman, O., Faergeman, G., Pyörälä, K., Miettinen, T., Wilhelmsen, L., Olsson, A.G., et al. (1994). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344, 1383-1389.
- Rittershaus, C.W., Miller, D.P., Thomas, L.J., Picard, M.D., Honan, C.M., Emmett, C.D., Pettey, C.L., Adari, H., Hammond, R.A., Beattie, D.T., et al. (2000). Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20, 2106-2112. https://doi.org/10.1161/01.ATV.20.9.2106
- Sacks, F.M., Pfeffer, M.A., Moye, L.A., Rouleau, J.L., Rutherford, J.D., Cole, T.G., Brown, L., Warnica, J.W., Arnold, J.M., Wun, C.C., et al. (1996). The effect of pravastatin on coronary events after myocardial infarction in participants with average cholesterol levels. N. Engl. J. Med. 335, 1001-1009. https://doi.org/10.1056/NEJM199610033351401
- Schaefer, E.J. (2013). Effects of cholesteryl ester transfer protein inhibitors on human lipoprotein metabolism: why have they failed in lowering coronary heart disease risk? Curr. Opin. Lipidol. 24, 259-264. https://doi.org/10.1097/MOL.0b013e3283612454
- Shepherd, J., Cobbe, S.M., Ford, I., Isles, C.G., Lorimer, A.R., MacFarlane, P.W., McKillop, J.H., and Packard, C.J. (1995). For the West of Scotland Coronary Prevention Study Group: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N. Engl. J. Med. 333, 1301-1307. https://doi.org/10.1056/NEJM199511163332001
- Sikorski, J.A. (2006). Oral cholesteryl ester transfer protein (CETP) inhibitors: a potential new approach for treating coronary artery disease. J. Med. Chem. 49, 1-22. https://doi.org/10.1021/jm058224l
- Sugano, M., Makino, N., Sawada, S., Otsuka, S., Watanabe, M., Okamoto, H., Kamada, M., and Mizushima, A. (1998). Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J. Biol. Chem. 273, 5033-5036. https://doi.org/10.1074/jbc.273.9.5033
- Tall, A.R. (1993). Plasma cholesteryl ester transfer protein. J. Lipid Res. 34, 1255-1274.
- Wolfe, M.L., and Rader, D.J. (2004). Cholesteryl ester transfer protein and coronary artery disease: an observation with therapeutic implications. Circulation 110, 1338-1340. https://doi.org/10.1161/01.CIR.0000143047.52724.BB
- Zhong, S., Sharp, D.S., Grove, J.S., Bruce, C., Yano, K., Curb, J.D., and Tall, A.R. (1996). Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J. Clin. Invest. 97, 2917-2923. https://doi.org/10.1172/JCI118751
Cited by
- The controversy over the use of cholesteryl ester transfer protein inhibitors: is there some light at the end of the tunnel? vol.46, pp.6, 2016, https://doi.org/10.1111/eci.12626
- Design, synthesis and biological evaluation of novel cholesteryl ester transfer protein inhibitors bearing a cycloalkene scaffold vol.123, 2016, https://doi.org/10.1016/j.ejmech.2016.07.065
- Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics vol.2015, 2015, https://doi.org/10.1155/2015/296417
- Serum Lipid Transfer Proteins in Hypothyreotic Patients Are Inversely Correlated with Thyroid-Stimulating Hormone (TSH) Levels vol.22, 2016, https://doi.org/10.12659/MSM.898134
- Plasma lipoprotein subfraction concentrations are associated with lipid metabolism and age-related macular degeneration vol.58, pp.9, 2017, https://doi.org/10.1194/jlr.M073684
- Design, Synthesis and Biological Evaluation of N,N-Substituted Amine Derivatives as Cholesteryl Ester Transfer Protein Inhibitors vol.22, pp.10, 2017, https://doi.org/10.3390/molecules22101658
- Diabetes alters the association between high-density lipoprotein subfractions and carotid intima-media thickness: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) pp.1752-8984, 2018, https://doi.org/10.1177/1479164118788080
- A mega-analysis of expression quantitative trait loci (eQTL) provides insight into the regulatory architecture of gene expression variation in liver vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-24219-z
- Reliable structural information for rational design of benzoxazole type potential cholesteryl ester transfer protein (CETP) inhibitors through multiple validated modeling techniques pp.1538-0254, 2018, https://doi.org/10.1080/07391102.2018.1552895
- Serum CETP and PLTP activity in middle-aged men living in urban or rural area of the Lower Silesia region. PURE Poland sub-study vol.12, pp.4, 2016, https://doi.org/10.5114/aoms.2016.60950
- HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics vol.19, pp.12, 2017, https://doi.org/10.1007/s11886-017-0940-0
- HDL 3 Cholesterol Levels in an Elderly Population vol.25, pp.1, 2018, https://doi.org/10.5551/jat.ed072
- Biological Consequences of Dysfunctional HDL vol.26, pp.9, 2014, https://doi.org/10.2174/0929867325666180530110543
- Cholesteryl ester transfer protein: the physiological and molecular characteristics in the pathogenesis of atherosclerosis and Alzheimer’s disease vol.73, pp.None, 2014, https://doi.org/10.5604/01.3001.0013.3673
- The Effect of Smoking on the Association between Long-Term Alcohol Consumption and Dyslipidemia in a Middle-Aged and Older Population vol.55, pp.5, 2020, https://doi.org/10.1093/alcalc/agaa051
- A transcriptome-wide association study based on 27 tissues identifies 106 genes potentially relevant for disease pathology in age-related macular degeneration vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-58510-9