DOI QR코드

DOI QR Code

Cholesteryl Ester Transfer Protein (CETP) Deficiency and CETP Inhibitors

  • Mabuchi, Hiroshi (Department of Lipidology, Graduate School of Medical Science, Kanazawa University) ;
  • Nohara, Atsushi (Department of Lipidology, Graduate School of Medical Science, Kanazawa University) ;
  • Inazu, Akihiro (Laboratory Science, Graduate School of Medical Science, Kanazawa University)
  • Received : 2014.10.01
  • Accepted : 2014.10.04
  • Published : 2014.11.30

Abstract

Epidemiologic studies have shown that low-density lipoprotein cholesterol (LDL-C) is a strong risk factor, whilst high-density lipoprotein cholesterol (HDL-C) reduces the risk of coronary heart disease (CHD). Therefore, strategies to manage dyslipidemia in an effort to prevent or treat CHD have primarily attempted at decreasing LDL-C and raising HDL-C levels. Cholesteryl ester transfer protein (CETP) mediates the exchange of cholesteryl ester for triglycerides between HDL and VLDL and LDL. We have published the first report indicating that a group of Japanese patients who were lacking CETP had extremely high HDL-C levels, low LDL-C levels and a low incidence of CHD. Animal studies, as well as clinical and epidemiologic evidences, have suggested that inhibition of CETP provides an effective strategy to raise HDL-C and reduce LDL-C levels. Four CETP inhibitors have substantially increased HDL-C levels in dyslipidemic patients. This review will discuss the current status and future prospects of CETP inhibitors in the treatment of CHD. At present anacetrapib by Merck and evacetrapib by Eli Lilly are under development. By 100mg of anacetrapib HDL-C increased by 138%, and LDL-C decreased by 40%. Evacetrapib 500 mg also showed dramatic 132% increase of HDL-C, while LDL-C decreased by 40%. If larger, long-term, randomized, clinical end point trials could corroborate other findings in reducing atherosclerosis, CETP inhibitors could have a significant impact in the management of dyslipidemic CHD patients. Inhibition of CETP synthesis by antisense oligonucleotide or small molecules will produce more similar conditions to human CETP deficiency and may be effective in reducing atherosclerosis and cardiovascular events. We are expecting the final data of prospective clinical trials by CETP inhibitors in 2015.

Keywords

References

  1. Agellon, L.B., Walsh, A., Hayek, T., Moulin, P., Jiang, X.C., Shelanski, S.A., Breslow, J.L., and Tall, A.R. (1991). Reduced high-density lipoprotein cholesterol in human cholesteryl ester transfer protein transgenic mice. J. Biol. Chem. 266, 10796-10801.
  2. Barter, P.J., Brewer, H.B. Jr., Chapman, M.J., Hennekens, C.H., Rader, D.J., and Tall, A.R. (2003). Cholesteryl ester transfer protein:a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 160-167. https://doi.org/10.1161/01.ATV.0000054658.91146.64
  3. Bell, T.A., Graham, M.J., Lee, R.G., Mullick, A.E., Fu, W., Norris, D., and Crooke, R.M. (2013). Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances RCT in hyperlipidemic, CETP transgenic, LDLr-/- mice. J. Lipid Res. 54, 2647-2657. https://doi.org/10.1194/jlr.M036509
  4. Brewer, H.B. Jr. (2004). Increasing HDL cholesterol levels. N. Engl. J. Med. 350, 1491-1494. https://doi.org/10.1056/NEJMp048023
  5. Brousseau, M.E., Schaefer, E.J., Wolfe, M.L., Bloedon, L.T., Digenio, A.G., Clark, R.W., Mancuso, J.P., and Rader, D.J. (2004). Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. 350, 1505-1515. https://doi.org/10.1056/NEJMoa031766
  6. Brown, M.L., Inazu, A., Hesler, C.B., Agellon, L.B., Mann, C., Whitlock, M.E., Marcel, Y.L., Milne, R.W., Koizumi, J., Mabuchi, H., et al. (1989). Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342, 448-451. https://doi.org/10.1038/342448a0
  7. Curb, J.D., Abbott, R.D., Rodriguez, B.L., Masaki, K., Chen, R., Sharp, D.S., and Tall, A.R. (2004). A prospective study of HDLC and cholesteryl ester transfer protein gene mutations and the risk of coronary heart disease in the elderly. J. Lipid Res. 45, 948-953. https://doi.org/10.1194/jlr.M300520-JLR200
  8. de Grooth, G.J., Smilde, T.J., Van Wissen, S., Klerkx, A.H., Zwinderman, A.H., Fruchart, J.C., Kastelein, J.J., Stalenhoef, A.F., and Kuivenhoven, J.A. (2004). The relationship between cholesteryl ester transfer protein levels and risk factor profile in patients with familial hypercholesterolemia. Atherosclerosis 173, 261-267. https://doi.org/10.1016/j.atherosclerosis.2003.11.020
  9. Downs, J.R., Clearfield, M., Weis, S., Whitney, E., Shapiro, D.R., Beere, P.A., Langendorfer, A., Stein, E.A., Kruyer, W., Gotto, A.M. Jr., et al. (1998). Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 279, 1615-1622. https://doi.org/10.1001/jama.279.20.1615
  10. Gaynor, B.J., Sand, T., Clark, R.W., Aiello, R.J., Bamberger, M.J., and Moberly, J.B. (1994). Inhibition of cholesteryl ester transfer protein activity in hamsters alters HDL lipid composition. Atherosclerosis 110, 101-109. https://doi.org/10.1016/0021-9150(94)90073-6
  11. Glueck, C.J., Gartside, P., Fallat, R.W., Sielski, J., and Steiner, P.M. (1976). Longevity syndromes: familial hypo-$\beta$ and familial hyper-$\alpha$-lipoproteinemia. J. Lab. Clin. Med. 88, 941-957.
  12. Gordon, T., Kannel, W.B., Castelli, W.P., and Dawber, T.R. (1981). Lipoproteins, cardiovascular disease, and death. The Framingham study. Arch. Intern. Med. 141, 1128-1131. https://doi.org/10.1001/archinte.1981.00340090024008
  13. Ha, Y.C., and Barter, P.J. (1982). Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp. Biochem. Physiol. B. 71, 265-269. https://doi.org/10.1016/0300-9629(82)90398-X
  14. Han K.H., Park, Y.B., Chae, I.H., Kim, H.S., Sohn, D.W., Oh, B.H., Lee, M.M, Choi, Y.S., Seo, J.D., Lee, Y.W., et al. (1996). CETP (cholesteryl esters transfer protein) deficiency caused by genetic mutation in the CETP gene in normal Korean population. Korean Circ. J. 26, 500-506. https://doi.org/10.4070/kcj.1996.26.2.500
  15. Haraki, T., Inazu, A., Yagi, K., Kajinami, K., Koizumi, J., and Mabuchi, H. (1997). Clinical characteristics of double heterozygotes with familial hypercholesterolemia and cholesteryl ester transfer protein deficiency. Atherosclerosis 132, 229-236. https://doi.org/10.1016/S0021-9150(97)00093-2
  16. Hirano, K., Yamashita, S., Kuga, Y., Sakai, N., Nozaki, S., Kihara, S., Arai, T., Yanagi, K., Takami, S., Menju, M., et al. (1995). Atherosclerotic disease in marked hyperalphalipoproteinemia. Combined reduction of cholesteryl ester transfer protein and hepatic triglyceride lipase. Arterioscler. Thromb. Vasc. Biol. 15, 1849-1856. https://doi.org/10.1161/01.ATV.15.11.1849
  17. Hirano, K., Yamashita, S., Nakajima, N., Arai, T., Maruyama, T., Yoshida, Y., Ishigami, M., Sakai, N., Kameda-Takemura, K., and Matsuzawa, Y. (1997). Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler. Thromb. Vasc. Biol. 17, 1053-1059. https://doi.org/10.1161/01.ATV.17.6.1053
  18. Huang, Z., Inazu, A., Nohara, A., Higashikata, T., and Mabuchi, H. (2002). Cholesteryl ester transfer protein inhibitor (JTT-705) and the development of atherosclerosis in rabbits with severe hypercholesterolaemia. Clin. Sci. (Lond). 103, 587-594. https://doi.org/10.1042/cs1030587
  19. Inazu, A.1., and Mabuchi, H. (2003). Therapeutic implications of cholesteryl ester transfer protein inhibitors in hyperlipidemia and low high-density lipoprotein-cholesterolemia. Curr. Opin. Investig. Drugs 4, 291-297.
  20. Inazu, A.1., Brown, M.L., Hesler, C.B., Agellon, L.B., Koizumi, J., Takata, K., Maruhama, Y., Mabuchi, H., and Tall, A.R. (1990). Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 323, 1234-1238. https://doi.org/10.1056/NEJM199011013231803
  21. Inazu, A.1., Jiang, X.C., Haraki, T., Yagi, K., Kamon, N., Koizumi, J., Mabuchi, H., Takeda, R., Takata, K., Moriyama, Y., et al. (1994). Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high-density lipoprotein cholesterol. J. Clin. Invest. 94, 1872-1882. https://doi.org/10.1172/JCI117537
  22. Kastelein, J.J., van Leuven, S.I., Burgess, L., Evans, G.W., Kuivenhoven, J.A., Barter, P.J., Revkin, J.H., Grobbee, D.E., Riley, W.A., Shear, C.L., et al. (2007). Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med. 356, 1620-1630. https://doi.org/10.1056/NEJMoa071359
  23. Koizumi, J., Mabuchi, H., Yoshimura, A., Michishita, I., Takeda, M., Itoh, H., Sakai, Y., Sakai, T., Ueda, K., and Takeda, R. (1985). Deficiency of serum cholesteryl-ester transfer activity in patients with familial hyperalphalipoproteinaemia. Atherosclerosis 58, 175-186. https://doi.org/10.1016/0021-9150(85)90064-4
  24. Linsel-Nitschke P.I., and Tall A.R. (2005). HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat. Rev. Drug Discov. 4, 193-205. https://doi.org/10.1038/nrd1658
  25. Marotti, K.R., Castle, C.K., Boyle, T.P., Lin, A.H., Murray, R.W., and Melchior, G.W. (1993). Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 364, 73-75. https://doi.org/10.1038/364073a0
  26. Matsuura, F., Wang, N., Chen, W., Jiang, X.C., and Tall, A.R. (2006). HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J. Clin. Invest. 116, 1435-1442. https://doi.org/10.1172/JCI27602
  27. Miwa, K., Inazu, A., Kawashiri, M., Nohara, A., Higashikata, T., Kobayashi, J., Koizumi, J., Nakajima, K., Nakano, T., Niimi, M., et al. (2009). Cholesterol efflux from J774 macrophages and Fu5AH hepatoma cells to serum is preserved in CETP-deficient patients. Clin. Chim. Acta 402, 19-24. https://doi.org/10.1016/j.cca.2008.12.012
  28. Moriyama, Y., Okamura, T., Inazu, A., Doi, M., Iso, H., Mouri, Y., Ishikawa, Y., Suzuki, H., Iida, M., Koizumi, J., et al. (1998). A low prevalence of coronary heart disease among subjects with increased high-density lipoprotein cholesterol levels, including those with plasma cholesteryl ester transfer protein deficiency. Prev. Med. 27, 659-667. https://doi.org/10.1006/pmed.1998.0340
  29. National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). (2002). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation 106, 3143-3421.
  30. Nissen, SE., Tardif, J.C., Nicholls, S.J., Revkin, J.H., Shear, C.L., Duggan, W.T., Ruzyllo, W., Bachinsky, W.B., Lasala, G.P., Tuzcu, E.M., et al. (2007). Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304-1316. https://doi.org/10.1056/NEJMoa070635
  31. Okamoto, H., Yonemori, F., Wakitani, K., Minowa, T., Maeda, K., and Shinkai, H. (2000). A cholesteryl ester transfer protein in hibitor attenuates atherosclerosis in rabbits. Nature 406, 203-207. https://doi.org/10.1038/35018119
  32. Olsson, A.G., Schwartz, G.G., Szarek, M., Sasiela, W.J., Ezekowitz, M.D., Ganz, P., Oliver, M.F., Waters, D., and Zeiher, A. (2005). High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: results from the MIRACLE trial. Eur. Heart J. 26, 890-896. https://doi.org/10.1093/eurheartj/ehi186
  33. Pedersen, T.R., Kjekshus, J., Berg, K., Haghfelt, T., Faergeman, O., Faergeman, G., Pyörälä, K., Miettinen, T., Wilhelmsen, L., Olsson, A.G., et al. (1994). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344, 1383-1389.
  34. Rittershaus, C.W., Miller, D.P., Thomas, L.J., Picard, M.D., Honan, C.M., Emmett, C.D., Pettey, C.L., Adari, H., Hammond, R.A., Beattie, D.T., et al. (2000). Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20, 2106-2112. https://doi.org/10.1161/01.ATV.20.9.2106
  35. Sacks, F.M., Pfeffer, M.A., Moye, L.A., Rouleau, J.L., Rutherford, J.D., Cole, T.G., Brown, L., Warnica, J.W., Arnold, J.M., Wun, C.C., et al. (1996). The effect of pravastatin on coronary events after myocardial infarction in participants with average cholesterol levels. N. Engl. J. Med. 335, 1001-1009. https://doi.org/10.1056/NEJM199610033351401
  36. Schaefer, E.J. (2013). Effects of cholesteryl ester transfer protein inhibitors on human lipoprotein metabolism: why have they failed in lowering coronary heart disease risk? Curr. Opin. Lipidol. 24, 259-264. https://doi.org/10.1097/MOL.0b013e3283612454
  37. Shepherd, J., Cobbe, S.M., Ford, I., Isles, C.G., Lorimer, A.R., MacFarlane, P.W., McKillop, J.H., and Packard, C.J. (1995). For the West of Scotland Coronary Prevention Study Group: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N. Engl. J. Med. 333, 1301-1307. https://doi.org/10.1056/NEJM199511163332001
  38. Sikorski, J.A. (2006). Oral cholesteryl ester transfer protein (CETP) inhibitors: a potential new approach for treating coronary artery disease. J. Med. Chem. 49, 1-22. https://doi.org/10.1021/jm058224l
  39. Sugano, M., Makino, N., Sawada, S., Otsuka, S., Watanabe, M., Okamoto, H., Kamada, M., and Mizushima, A. (1998). Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J. Biol. Chem. 273, 5033-5036. https://doi.org/10.1074/jbc.273.9.5033
  40. Tall, A.R. (1993). Plasma cholesteryl ester transfer protein. J. Lipid Res. 34, 1255-1274.
  41. Wolfe, M.L., and Rader, D.J. (2004). Cholesteryl ester transfer protein and coronary artery disease: an observation with therapeutic implications. Circulation 110, 1338-1340. https://doi.org/10.1161/01.CIR.0000143047.52724.BB
  42. Zhong, S., Sharp, D.S., Grove, J.S., Bruce, C., Yano, K., Curb, J.D., and Tall, A.R. (1996). Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J. Clin. Invest. 97, 2917-2923. https://doi.org/10.1172/JCI118751

Cited by

  1. The controversy over the use of cholesteryl ester transfer protein inhibitors: is there some light at the end of the tunnel? vol.46, pp.6, 2016, https://doi.org/10.1111/eci.12626
  2. Design, synthesis and biological evaluation of novel cholesteryl ester transfer protein inhibitors bearing a cycloalkene scaffold vol.123, 2016, https://doi.org/10.1016/j.ejmech.2016.07.065
  3. Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics vol.2015, 2015, https://doi.org/10.1155/2015/296417
  4. Serum Lipid Transfer Proteins in Hypothyreotic Patients Are Inversely Correlated with Thyroid-Stimulating Hormone (TSH) Levels vol.22, 2016, https://doi.org/10.12659/MSM.898134
  5. Plasma lipoprotein subfraction concentrations are associated with lipid metabolism and age-related macular degeneration vol.58, pp.9, 2017, https://doi.org/10.1194/jlr.M073684
  6. Design, Synthesis and Biological Evaluation of N,N-Substituted Amine Derivatives as Cholesteryl Ester Transfer Protein Inhibitors vol.22, pp.10, 2017, https://doi.org/10.3390/molecules22101658
  7. Diabetes alters the association between high-density lipoprotein subfractions and carotid intima-media thickness: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) pp.1752-8984, 2018, https://doi.org/10.1177/1479164118788080
  8. A mega-analysis of expression quantitative trait loci (eQTL) provides insight into the regulatory architecture of gene expression variation in liver vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-24219-z
  9. Reliable structural information for rational design of benzoxazole type potential cholesteryl ester transfer protein (CETP) inhibitors through multiple validated modeling techniques pp.1538-0254, 2018, https://doi.org/10.1080/07391102.2018.1552895
  10. Serum CETP and PLTP activity in middle-aged men living in urban or rural area of the Lower Silesia region. PURE Poland sub-study vol.12, pp.4, 2016, https://doi.org/10.5114/aoms.2016.60950
  11. HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics vol.19, pp.12, 2017, https://doi.org/10.1007/s11886-017-0940-0
  12. HDL 3 Cholesterol Levels in an Elderly Population vol.25, pp.1, 2018, https://doi.org/10.5551/jat.ed072
  13. Biological Consequences of Dysfunctional HDL vol.26, pp.9, 2014, https://doi.org/10.2174/0929867325666180530110543
  14. Cholesteryl ester transfer protein: the physiological and molecular characteristics in the pathogenesis of atherosclerosis and Alzheimer’s disease vol.73, pp.None, 2014, https://doi.org/10.5604/01.3001.0013.3673
  15. The Effect of Smoking on the Association between Long-Term Alcohol Consumption and Dyslipidemia in a Middle-Aged and Older Population vol.55, pp.5, 2020, https://doi.org/10.1093/alcalc/agaa051
  16. A transcriptome-wide association study based on 27 tissues identifies 106 genes potentially relevant for disease pathology in age-related macular degeneration vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-58510-9